CVXPY x NASA Course 2024

Philipp Schiele Steven Diamond Parth Nobel Akshay Agrawal

July 8, 2024

Geometric Programming and Aircraft Design

Outline

Homework review

This lecture

Geometric programming

Aircraft design

Other GP compatible models

Monomial function fitting

Linear measurements with IID noise

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $x \in \mathbf{R}^n$ is vector of unknown parameters
- v_i is IID measurement noise, with density p(z)
- ▶ y_i is measurement: $y \in \mathbf{R}^m$ has density $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

maximum likelihood estimate: any solution x of

maximize
$$l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$

(y is observed value)

MLE with exponentially distributed noise

Show how to solve the ML estimation problem when the noise is exponentially distributed, with density

$$p(z) = \begin{cases} (1/a)e^{-z/a} & z \ge 0\\ 0 & z < 0, \end{cases}$$

where a > 0.

Solution

Substitute

$$p(z) = \begin{cases} (1/a)e^{-z/a} & z \ge 0\\ 0 & z < 0, \end{cases}$$

into MLE problem

maximize
$$l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$

• Let $\lambda = 1/a$. The log-likelihood *l* is

$$l(x) = \sum_{i=1}^{m} \log(\lambda \cdot e^{(a_i^T x - y_i)\lambda} \cdot \mathbf{1}[y_i - a_i^T x \ge 0])$$
$$= \sum_{i=1}^{m} \log \lambda + (a_i^T x - y_i)\lambda + \log \mathbf{1}[y_i - a_i^T x \ge 0])$$

CVXPY x NASA Course 2024

Solution

• To maximize l(x), maximize

$$\sum_{i=1}^{m} (a_i^T x - y) = \mathbf{1}^T (Ax - y), \quad Ax \le y$$

(can ignore constant λ)

Compute the maximum likelihood estimate of x by solving the LP

 $\begin{array}{ll} \text{maximize} & \mathbf{1}^T (Ax - y) \\ \text{subject to} & Ax \leq y \end{array}$

Comparing regularizers

https://marimo.app/l/dh54bd

Outline

Homework review

This lecture

Geometric programming

Aircraft design

Other GP compatible models

Monomial function fitting

This lecture

- This lecture is about a specific kind of convex optimization problem: the geometric program (GP)
- Geometric programs are widely used in engineering design: chemical engineering, circuit design, transformer design, communications, aircraft design, ...
- They are nonconvex in their natural form, but can be made convex via a change of variables
- Popularized in aero/astro by NASA astronaut Woody Hoburg
- Example: size a wing to minimize the total drag

Readings

- A Tutorial on Geometric Programming [Boyd, et al]
- Geometric Programming for Aircraft Design Optimization [Hoburg, Abbeel]
- Optional) Hyperloop System Optimization [Kirschen, Burnell]

Motivation from aircraft design

- Design optimization requires solving many problems, sweeping out trade-off curves
- Requires reliable and efficient optimization methods
- Geometric programs well-suited to physics-based models, and can be readily solved with convex optimization (in contrast to nonlinear or black-box optimization methods)
- GPs can't model arbitrary nonlinear relationships ...
- ... but are surprisingly expressive, and can employ effective approximation techniques

Outline

Homework review

This lecture

Geometric programming

Aircraft design

Other GP compatible models

Monomial function fitting

Geometric programming

monomial function:

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \mathbf{dom} f = \mathbf{R}_{++}^n$$

with c > 0, $a_i \in \mathbf{R}$.

> posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} f = \mathbf{R}_{++}^n$$

geometric program (GP)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & g_i(x)=1, \quad i=1,\ldots,p \end{array}$$

with f_i posynomial, g_i monomial.

CVXPY x NASA Course 2024

Converting geometric programs to convex form

- The standard form of the geometric program is non-convex
- Can be made convex via a log-log transformation:
- 1. Change variables $y_i = \log x_i$
- 2. Take logarithm of objective, constraints

Log-log transformation of monomials

monomial function:

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \mathbf{dom} f = \mathbf{R}_{++}^n$$

with c > 0, $a_i \in \mathbf{R}$.

Substitute $y_i = \log x_i$:

$$f(x) = f(e^{y_1}, \ldots, e^{y_n}) = c e^{y_1 a_1} \cdots e^{y_n a_n}$$

► Take logarithm of *f*:

$$\log f(x) = \log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b, \quad b = \log c$$

b monomial functions are **affine** in $y \in \mathbf{R}^n$ after log-log transformation

Log-log transformation of posynomials

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} f = \mathbf{R}_{++}^n$$

Substitute $y_i = \log x_i$:

$$f(x) = f(e^{y_1}, \dots, e^{y_n}) = \sum_{k=1}^{K} e^{a_k^T y + b_k}, \quad b_k = \log c_k$$

► Take logarithm of *f*:

$$\log f(x) = \log f(e^{y_1}, \dots, e^{y_n}) = \log \sum_{k=1}^{K} e^{a_k^T y + b_k}$$

> posynomial functions are **convex** in $y \in \mathbf{R}^n$ after log-log transformation

Geometric program in convex form

Start with a GP

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$
 $g_i(x) = 1$, $i = 1, ..., p$

where f_i are posynomials and g_i are monomials.

Taking log-log transformation of objective and constraints converts geometric program into a convex optimization problem:

minimize
$$\begin{split} & \log \sum_{k=1}^{K} \exp(a_{0k}^{T} \mathbf{y} + b_{0k}) \\ & \text{subject to} \quad \log \sum_{k=1}^{K} \exp(a_{ik}^{T} \mathbf{y} + b_{ik}) \leq 0, \quad i = 1, \dots, m \\ & Gy + d = 0. \end{split}$$

Example with CVXPY

https://marimo.app/l/uttpdr

Trade-off Analysis

Consider perturbed GP

minimize
$$f_0(x)$$

subject to $f_i(x) \le u_i$, $i = 1, ..., m$
 $g_i(x) = v_i$, $i = 1, ..., p$

where u_i , v_i are positive constants, with optimal value p(u, v).

- ▶ for $u_i > 1$, *i*th inequality constraint loosened by $(100)(u_i 1)$ percent
- ▶ for $u_i > 1$, *i*th inequality constraint tightened by $(100)(u_i 1)$
- Can study optimal trade-off between constraints and objective by resolving problem while perturbing one constraint, holding others constant.

Sensitivity Analysis

• The optimal dual variable λ^* of the inequality constraint functions satisfies

$$\lambda_i^{\star} = \frac{\partial \log p}{\partial u_i} \Big|_{u=1, v=1}$$

Because

$$\frac{\partial \log p(u, v)}{\partial u_i} = \frac{1}{p(u, v)} \frac{\partial p(u, v)}{\partial u_i}$$

for small perturbations,

$$\lambda_i^{\star} \approx \Delta p / p^{\star},$$

that is, the sensitivity λ_i^{\star} gives the *fractional* change in the optimal value per fractional change in inequality *i*

Exercise

- Warm up for aircraft design problem
- In this exercise, we maximize the shape of a box with height h, width w, and depth d, with limits on the wall area 2(hw + hd) and the floor area wd, subject to bounds on the aspect ratios h/w and w/d. The optimization problem is

$$\begin{array}{ll} \mbox{maximize} & hwd \\ \mbox{subject to} & 2(hw+hd) \leq A_{wall}, \\ & wd \leq A_{tlr}, \\ & \alpha \leq h/w \leq \beta, \\ & \gamma \leq d/w \leq \delta. \end{array}$$

with variables h > 0, w > 0, and d > 0

Exercise

https://marimo.app/l/g8julj

Exercise solution

https://marimo.app/l/b2hvro

Outline

Homework review

This lecture

Geometric programming

Aircraft design

Other GP compatible models

Monomial function fitting

- Our goal is to size a wing with total area *S*, span *b*, and aspect ratio $A = b^2/S$. These parameters should be chosen to minimize the total drag $D = 1/2\rho V^2 C_D S$, where ρ is the density of air, *V* is the cruising speed, and C_D is the drag coefficient.
- The drag coefficient C_D is modeled as the sum of the fuselage parasite drag, wing parasite drag, and induced drag:

$$C_D = (\mathsf{CDA}_0)/S + kC_f + S_{\mathsf{wet}}/S + \frac{C_L^2}{\pi Ae},$$

where $(CDA_0)/S$ is the fuselage drag area, k is a form factor for pressure drag, S_{wet}/S is the wetted area ratio, C_L is the lift coefficient, and e is the Oswald efficiency factor.

• The skin friction C_f can be approximated as

$$C_f = 0.074 / \text{Re}^2$$

where $Re = \rho V / \mu \sqrt{(S/A)}$ is the Reynolds number at mean cord $c = \sqrt{S/A}$.

The total aircraft weight W is the sum of a fixed weight W_0 and the wing weight W_w :

 $W = W_0 + W_w.$

The wing weight is

$$W_w = 45.42S + 8.71 \cdot 10^{-5} N_{\text{ult}} A^{3/2} \sqrt{W_0 W} / \tau,$$

where N_{ult} is the ultimate load factor for structural sizing, and τ is the airfoil thickenss to chord ratio.

The weight equations are coupled to the drag equations by the constraint that lift equals weight,

 $W = 1/2\rho V^2 C_L S.$

Finally, for a safe landing, the aircraft should be capable of flying at a reduced speed V_{min} subject to a stall constraint,

$$\frac{2W}{\rho V_{\min}^2 S} \le C_{L,\max}.$$

Tradeoff surfaces

Solve 775 problems in 3 seconds to compute tradeoff surfaces:

CVXPY x NASA Course 2024

Relaxation

Consider the following program

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$
 $h(x) = 1$

where the f_i and h are posynomials.

• This is **not** a GP, because h(x) = 1 is a posynomial equality constraint.

Relaxation

If there exists an index r such that

- $-f_0$ is increasing in x_r ,
- $-f_i$ are nondecreasing in x_r ,
- -h is decreasing in x_r ,

then any solution x^* of the *relaxed* problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$
 $h(x) \le 1$

satisfies $h(x^*) = 1$. This means we can solve the original nonconvex problem with the relaxed GP.

Wing sizing and relaxation

- Many of the constraints in the wing sizing problem are posynomial equality constraints, making it not a GP
- Relaxing these constraints yields an equivalent problem!
- ► For example,

$$C_D = (\mathsf{CDA}_0)/S + kC_f + S_{\mathsf{wet}}/S + \frac{C_L^2}{\pi Ae},$$

can be replaced with

$$C_D \ge (\mathsf{CDA}_0)/S + kC_f + S_{\mathsf{wet}}/S + \frac{C_L^2}{\pi Ae},$$

since the objective (total drag) $D = 1/2\rho V^2 C_D S$ is increasing in C_D (exercise: check that the other conditions hold).

Homework

- Formulate the wing sizing problem as a geometric program, and solve it using CVXPY.
- Will require use of relaxations.
- Notebook has problem data and variable definitions.
- https://marimo.app/l/xnvuat
- Reference: §3 of Geometric Programming for Aircract Design Optimization
- https://people.eecs.berkeley.edu/~pabbeel/papers/2012_gp_design.pdf

Outline

Homework review

This lecture

Geometric programming

Aircraft design

Other GP compatible models

Monomial function fitting

Steady level flight relations

The steady level flight relations constrain lift to equal the aircraft's total weight and thrust to equal force of drag:

L = W T = D $L = 0.5\rho V^2 C_L S$ $D \ge 1/2\rho V^2 C_D S$

where *L* is the lift force, *W* is the total aircraft weight, *T* is the thrust force, ρ the density of air, *V* the flight speed, *C*_L the lift coefficient, *S* the wing area, and *C*_D the total drag coefficient

These are each monomial constraints

Total aircraft weight

Total aircraft weight W is a sum of component weights

► For example

$$W_{zfw} \ge W_{fixed} + W_{payload} + W_{wing} + W_{tail} + \cdots$$

and

$$W \geq W_{zfw}(1 + \theta_{\text{fuel}})$$

where θ_{fuel} is the fuel mass fraction W_{fuel}/W_{zfw} .

- These are posynomial constraints
- Weights can be further broken down

Chain of efficiencies

• Chain of efficiencies η relate cruise thrust power to fuel power:

 $TV \leq P_{\text{fuel}} \eta_{\text{eng}} \eta_{\text{prop}}$

where $P_{\text{fuel}} = mh$ is the is the mass flow rate times heating value, η_{eng} is the engine's fuel power to shaft power conversion efficiency, and η_{prop} is the propulsive shaft power to thrust power conversion efficiency.

Monomial constraint

Outline

Homework review

This lecture

Geometric programming

Aircraft design

Other GP compatible models

Monomial function fitting

Monomial function fitting

- Can fit monomial (or posynomial) functions that approximately match observed data
- Useful when design constraints not from known laws of physics but from observations
- Given data points

$$(x^{(i)}, f^{(i)}), \quad i = 1, \dots, N,$$

where $x^{(i)} \in \mathbf{R}_{++}^{n}$ are positive vectors and $f^{(i)}$ are positive constants.

- Goal is to fit the data with a monomial $f(x) = cx_{11}^a \cdots x_n^{a_n}$
- Find c > 0 and a_1, \ldots, a_n so that

 $f(x^{(i)})\approx\!f^{(i)}$

Monomial function fitting

- Can fit via standard regression techniques like least squares
- Let $y^{(i)} = \log x^{(i)}$
- Seek $\log f^{e^{y^{(i)}}} \approx \log f^{(i)}$, so that

$$\log c + a^T y^{(i)} \approx \log f^{(i)}, \quad i = 1, \dots, N.$$

Fit with least squares

minimize
$$\sum_{i=1}^{N} (\log c + a^T y^{(i)} - \log f^{(i)})^2$$

or any other regression technique.

Posynomial function fitting

- Also possible to fit posynomial functions to data
- See §8.5 of A Tutorial on Geometric Programming

Summary

- Geometric programs are nonconvex optimization problems on postive variables that become convex after a change of variables and log transformation
- Wide variety of engineering design problems naturally formulated as geometric programs
- Tricks like relaxations and function approximation can be used when problems are almost but not quite geometric programs
- Geometric programs can be solved quickly (ms) and reliably, making it possible to use them in tight inner loops when exploring tradeoff surfaces
- Optimal dual variables convey percent change in optimal value given percent change in constraints