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Linear measurements with IID noise

linear measurement model
yi = aT

i x + vi, i = 1, . . . ,m

I x ∈ Rn is vector of unknown parameters
I vi is IID measurement noise, with density p(z)
I yi is measurement: y ∈ Rm has density px (y) =

∏m
i=1 p(yi − aT

i x)

maximum likelihood estimate: any solution x of

maximize l(x) = ∑m
i=1 log p(yi − aT

i x)

(y is observed value)
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MLE with exponentially distributed noise

Show how to solve the ML estimation problem when the noise is exponentially distributed, with
density

p(z) =
{

(1/a)e−z/a z ≥ 0
0 z < 0,

where a > 0.
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Solution
I Substitute

p(z) =
{

(1/a)e−z/a z ≥ 0
0 z < 0,

into MLE problem

maximize l(x) = ∑m
i=1 log p(yi − aT

i x)
I Let 𝜆 = 1/a. The log-likelihood l is

l(x) =
m∑︁

i=1
log(𝜆 · e(a

T
i x−yi)𝜆 · 1[yi − aT

i x ≥ 0])

=

m∑︁
i=1

log𝜆 + (aT
i x − yi)𝜆 + log 1[yi − aT

i x ≥ 0])
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Solution

I To maximize l(x), maximize

m∑︁
i=1

(aT
i x − y) = 1T (Ax − y), Ax ≤ y

(can ignore constant 𝜆)
I Compute the maximum likelihood estimate of x by solving the LP

maximize 1T (Ax − y)
subject to Ax � y
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Comparing regularizers

https://marimo.app/l/dh54bd
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This lecture

I This lecture is about a specific kind of convex optimization problem: the geometric program
(GP)

I Geometric programs are widely used in engineering design: chemical engineering, circuit
design, transformer design, communications, aircraft design, . . .

I They are nonconvex in their natural form, but can be made convex via a change of variables
I Popularized in aero/astro by NASA astronaut Woody Hoburg
I Example: size a wing to minimize the total drag
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Readings

I A Tutorial on Geometric Programming [Boyd, et al]
I Geometric Programming for Aircraft Design Optimization [Hoburg, Abbeel]
I (Optional) Hyperloop System Optimization [Kirschen, Burnell]
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Motivation from aircraft design

I Design optimization requires solving many problems, sweeping out trade-off curves
I Requires reliable and efficient optimization methods
I Geometric programs well-suited to physics-based models, and can be readily solved with

convex optimization (in contrast to nonlinear or black-box optimization methods)
I GPs can’t model arbitrary nonlinear relationships ...
I ... but are surprisingly expressive, and can employ effective approximation techniques
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Geometric programming

I monomial function:

f (x) = cxa1
1 xa2

2 · · · xan
n , dom f = Rn

++

with c > 0, ai ∈ R.
I posynomial function: sum of monomials

f (x) =
K∑︁

k=1
ckxa1k

1 xa2k
2 · · · xank

n , dom f = Rn
++

I geometric program (GP)

minimize f0 (x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

gi (x) = 1, i = 1, . . . , p

with fi posynomial, gi monomial.
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Converting geometric programs to convex form

I The standard form of the geometric program is non-convex
I Can be made convex via a log-log transformation:
I 1. Change variables yi = log xi

I 2. Take logarithm of objective, constraints
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Log-log transformation of monomials

I monomial function:

f (x) = cxa1
1 xa2

2 · · · xan
n , dom f = Rn

++

with c > 0, ai ∈ R.
I Substitute yi = log xi:

f (x) = f (ey1 , . . . , eyn ) = cey1a1 · · · eynan

I Take logarithm of f :

log f (x) = log f (ey1 , . . . , eyn ) = aTy + b, b = log c

I monomial functions are affine in y ∈ Rn after log-log transformation
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Log-log transformation of posynomials

I posynomial function: sum of monomials

f (x) =
K∑︁

k=1
ckxa1k

1 xa2k
2 · · · xank

n , dom f = Rn
++

I Substitute yi = log xi:

f (x) = f (ey1 , . . . , eyn ) =
K∑︁

k=1
eaT

k y+bk , bk = log ck

I Take logarithm of f :

log f (x) = log f (ey1 , . . . , eyn ) = log
K∑︁

k=1
eaT

k y+bk

I posynomial functions are convex in y ∈ Rn after log-log transformation
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Geometric program in convex form

I Start with a GP

minimize f0 (x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

gi (x) = 1, i = 1, . . . , p

where fi are posynomials and gi are monomials.
I Taking log-log transformation of objective and constraints converts geometric program into a

convex optimization problem:

minimize log
∑K

k=1 exp(aT
0ky + b0k)

subject to log
∑K

k=1 exp(aT
iky + bik) ≤ 0, i = 1, . . . ,m

Gy + d = 0.
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Example with CVXPY

https://marimo.app/l/uttpdr
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Trade-off Analysis

I Consider perturbed GP

minimize f0 (x)
subject to fi (x) ≤ ui, i = 1, . . . ,m

gi (x) = vi, i = 1, . . . , p

where ui, vi are positive constants, with optimal value p(u, v).
I for ui > 1, ith inequality constraint loosened by (100) (ui − 1) percent
I for ui > 1, ith inequality constraint tightened by (100) (ui − 1)
I Can study optimal trade-off between constraints and objective by resolving problem while

perturbing one constraint, holding others constant.

CVXPY x NASA Course 2024 20



Sensitivity Analysis

I The optimal dual variable 𝜆★ of the inequality constraint functions satisfies

𝜆★i =
𝜕 log p
𝜕ui

���
u=1,v=1

I Because

𝜕 log p(u, v)
𝜕ui

=
1

p(u, v)
𝜕p(u, v)
𝜕ui

for small perturbations,

𝜆★i ≈ Δp/p★,

that is, the sensitivity 𝜆★i gives the fractional change in the optimal value per fractional change
in inequality i
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Exercise

I Warm up for aircraft design problem
I In this exercise, we maximize the shape of a box with height h, width w, and depth d, with limits

on the wall area 2(hw + hd) and the floor area wd, subject to bounds on the aspect ratios h/w
and w/d. The optimization problem is

maximize hwd
subject to 2(hw + hd) ≤ Awall,

wd ≤ Aflr,

𝛼 ≤ h/w ≤ 𝛽,

𝛾 ≤ d/w ≤ 𝛿.

with variables h > 0, w > 0, and d > 0
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Exercise

https://marimo.app/l/g8julj
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Exercise solution

https://marimo.app/l/b2hvro
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Wing sizing

I Our goal is to size a wing with total area S, span b, and aspect ratio A = b2/S. These
parameters should be chosen to minimize the total drag D = 1/2𝜌V2CDS, where 𝜌 is the
density of air, V is the cruising speed, and CD is the drag coefficient.

I The drag coefficient CD is modeled as the sum of the fuselage parasite drag, wing parasite
drag, and induced drag:

CD = (CDA0)/S + kCf + Swet/S +
C2

L
𝜋Ae

,

where (CDA0)/S is the fuselage drag area, k is a form factor for pressure drag, Swet/S is the
wetted area ratio, CL is the lift coefficient, and e is the Oswald efficiency factor.
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Wing sizing

I The skin friction Cf can be approximated as

Cf = 0.074/Re2

where Re = 𝜌V/𝜇
√︁
(S/A) is the Reynolds number at mean cord c =

√︁
S/A.

I The total aircraft weight W is the sum of a fixed weight W0 and the wing weight Ww:

W = W0 + Ww.
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Wing sizing

I The wing weight is

Ww = 45.42S + 8.71 · 10−5NultA3/2√︁W0W/𝜏,

where Nult is the ultimate load factor for structural sizing, and 𝜏 is the airfoil thickenss to chord
ratio.

I The weight equations are coupled to the drag equations by the constraint that lift equals weight,

W = 1/2𝜌V2CLS.
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Wing sizing

I Finally, for a safe landing, the aircraft should be capable of flying at a reduced speed Vmin
subject to a stall constraint,

2W
𝜌V2

minS
≤ CL,max.
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Tradeoff surfaces
Solve 775 problems in 3 seconds to compute tradeoff surfaces:
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Relaxation

I Consider the following program

minimize f0 (x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

h(x) = 1

where the fi and h are posynomials.
I This is not a GP, because h(x) = 1 is a posynomial equality constraint.
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Relaxation

I If there exists an index r such that
– f0 is increasing in xr,
– fi are nondecreasing in xr,
– h is decreasing in xr,

then any solution x★ of the relaxed problem

minimize f0 (x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

h(x) ≤ 1

satisfies h(x★) = 1. This means we can solve the original nonconvex problem with the relaxed
GP.
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Wing sizing and relaxation

I Many of the constraints in the wing sizing problem are posynomial equality constraints, making
it not a GP

I Relaxing these constraints yields an equivalent problem!
I For example,

CD = (CDA0)/S + kCf + Swet/S +
C2

L
𝜋Ae

,

can be replaced with

CD ≥ (CDA0)/S + kCf + Swet/S +
C2

L
𝜋Ae

,

since the objective (total drag) D = 1/2𝜌V2CDS is increasing in CD (exercise: check that the
other conditions hold).
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Homework

I Formulate the wing sizing problem as a geometric program, and solve it using CVXPY.
I Will require use of relaxations.
I Notebook has problem data and variable definitions.
I https://marimo.app/l/xnvuat

I Reference: §3 of Geometric Programming for Aircract Design Optimization
I https://people.eecs.berkeley.edu/~pabbeel/papers/2012_gp_design.pdf
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Steady level flight relations

I The steady level flight relations constrain lift to equal the aircraft’s total weight and thrust to
equal force of drag:

L = W
T = D

L = 0.5𝜌V2CLS

D ≥ 1/2𝜌V2CDS

where L is the lift force, W is the total aircraft weight, T is the thrust force, 𝜌 the density of air, V
the flight speed, CL the lift coefficient, S the wing area, and CD the total drag coefficient

I These are each monomial constraints
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Total aircraft weight

I Total aircraft weight W is a sum of component weights
I For example

Wzfw ≥ Wfixed + Wpayload + Wwing + Wtail + · · ·

and
W ≥ Wzfw (1 + 𝜃fuel,

where 𝜃fuel is the fuel mass fraction Wfuel/Wzfw.
I These are posynomial constraints
I Weights can be further broken down
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Chain of efficiencies

I Chain of efficiencies 𝜂 relate cruise thrust power to fuel power:

TV ≤ Pfuel𝜂eng𝜂prop

where Pfuel = mh is the is the mass flow rate times heating value, 𝜂eng is the engine’s fuel
power to shaft power conversion efficiency, and 𝜂prop is the propulsive shaft power to thrust
power conversion efficiency.

I Monomial constraint
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Monomial function fitting

I Can fit monomial (or posynomial) functions that approximately match observed data
I Useful when design constraints not from known laws of physics but from observations
I Given data points

(x(i) , f (i) ), i = 1, . . . ,N,

where x(i) ∈ Rn
++ are positive vectors and f (i) are positive constants.

I Goal is to fit the data with a monomial f (x) = cxa
11 · · · xan

n
I Find c > 0 and a1, . . . , an so that

f (x(i) ) ≈ f (i)
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Monomial function fitting

I Can fit via standard regression techniques like least squares
I Let y(i) = log x(i)

I Seek log f ey(i) ≈ log f (i) , so that

log c + aTy(i) ≈ log f (i) , i = 1, . . . ,N .

I Fit with least squares

minimize
∑N

i=1 (log c + aTy(i) − log f (i) )2

or any other regression technique.
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Posynomial function fitting

I Also possible to fit posynomial functions to data
I See §8.5 of A Tutorial on Geometric Programming
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Summary

I Geometric programs are nonconvex optimization problems on postive variables that become
convex after a change of variables and log transformation

I Wide variety of engineering design problems naturally formulated as geometric programs
I Tricks like relaxations and function approximation can be used when problems are almost but

not quite geometric programs
I Geometric programs can be solved quickly (ms) and reliably, making it possible to use them in

tight inner loops when exploring tradeoff surfaces
I Optimal dual variables convey percent change in optimal value given percent change in

constraints
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