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Sensitivity Analysis

I Let p★(u, v) represent the optimal value of the following perturbed optimization problem

minimize f0 (x)
subject to fi (x) ≤ ui, i = 1, . . . ,m

hi (x) ≤ vi, i = 1, . . . , p

I CVXPY computes the dual variables 𝜆★ ∈ Rm, 𝜈★ ∈ Rp

I If p★(u, v) is differentiable at u = 0, v = 0, then

𝜆★ = −dp★(0, 0)
du

, 𝜈★ = −dp★(0, 0)
dv

(0).

I More generally,
p★(u, v) ≥ p★(0, 0) − 𝜆★Tu − 𝜈★Tv.

I Convex Optimization, §5.6.
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Sensitivity analysis homework

I Consider the convex optimization problem

minimize f0 (x)
subject to f1 (x) ≤ s

Ax = b

I variable x ∈ Rn, parametrized by s ∈ R
I 𝜆★ the optimal dual variable for the inequality constraint with s = snom.
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Sensitivity analysis homework

If 𝜆★ is large, then decreasing s below snom

I might decrease the optimal value
I will increase the optimal value a lot
I can leave the optimal value unchanged
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Sensitivity analysis homework

If 𝜆★ is large, then increasing s above snom

I will decrease the optimal value a lot
I will increase the optimal value a lot
I can leave the optimal value unchanged
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Sensitivity analysis homework

If 𝜆★ = 0, then increasing s above snom

I can decrease the objective value
I can increase the objective value
I will leave the optimal value unchanged
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Robust Kalman filtering

I the Kalman filter works well when vt and wt are Gaussian
I we can use a robust optimization approach to make the filter more robust to outliers
I using the Huber penalty function, we can solve

minimize
∑N−1

t=0 𝜙𝜖 (wt) + 𝜏𝜙𝜂 (vt)
subject to xt+1 = Axt + Bwt

yt = Cxt + vt,

I where 𝜙𝜖 encodes our understanding for the noise in the state transitions
I where 𝜙𝜂 encodes our understanding for the noise in the observations
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Huber penalty function

𝜙hub (u) =
{

u2 |u| ≤ M
M(2|u| − M) |u| > M
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I linear growth for large u makes approximation less sensitive to outliers
I called a robust penalty

CVXPY x NASA Course 2024 10



Example
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I 42 points (circles) ti, yi, with two outliers
I affine function f (t) = 𝛼 + 𝛽t fit using quadratic (dashed) and Huber (solid) penalty
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Notebook solutions

I https://marimo.app/l/fqixko
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Penalty function approximation

minimize 𝜙(r1) + · · · + 𝜙(rm)
subject to r = Ax − b

(A ∈ Rm×n, 𝜙 : R → R is a convex penalty function)
examples
I quadratic: 𝜙(u) = u2

I deadzone-linear with width a:

𝜙(u) = max{0, |u| − a}

I log-barrier with limit a:

𝜙(u) =
{
−a2 log(1 − (u/a)2) |u| < a
∞ otherwise u

q
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Example: histograms of residuals

A ∈ R100×30; shape of penalty function affects distribution of residuals

absolute value 𝜙(u) = |u|

square 𝜙(u) = u2

deadzone 𝜙(u) = max{0, |u| −0.5}

log-barrier 𝜙(u) = − log(1 − u2)
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Standard regression

I given data (xi, yi) ∈ Rn × R, i = 1, . . . ,m
I fit linear (affine) model ŷi = 𝛽Txi − v, 𝛽 ∈ Rn, v ∈ R
I residuals are ri = ŷi − yi

I least-squares: choose 𝛽, v to minimize ‖r‖2
2 =

∑
i r2

i
I mean of optimal residuals is zero
I can add (Tychonov) regularization: with 𝜆 > 0,

minimize ‖r‖2
2 + 𝜆‖𝛽‖2

2
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Robust (Huber) regression

I replace square with Huber function

𝜙(u) =
{

u2 |u| ≤ M
2Mu − M2 |u| > M

M > 0 is the Huber threshold

I same as least-squares for small residuals, but allows (some) large residuals
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Example

I m = 450 measurements, n = 300 regressors
I choose 𝛽true; xi ∼ N(0, I)
I set yi = (𝛽true)Txi + 𝜖i, 𝜖i ∼ N(0, 1)
I with probability p, replace yi with −yi

I data has fraction p of (non-obvious) wrong measurements
I distribution of ‘good’ and ‘bad’ yi are the same
I try to recover 𝛽true ∈ Rn from measurements y ∈ Rm

I ‘prescient’ version: we know which measurements are wrong
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Example

50 problem instances, p varying from 0 to 0.15

CVXPY x NASA Course 2024 20



Example
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Quantile regression

I tilted ℓ1 penalty: for 𝜏 ∈ (0, 1),

𝜙(u) = 𝜏(u)+ + (1 − 𝜏) (u)− = (1/2) |u| + (𝜏 − 1/2)u

I quantile regression: choose 𝛽, v to minimize
∑

i 𝜙(ri)

I 𝜏 = 0.5: equal penalty for over- and under-estimating
I 𝜏 = 0.1: 9× more penalty for under-estimating
I 𝜏 = 0.9: 9× more penalty for over-estimating
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Quantile regression

I for ri ≠ 0,
𝜕
∑

i 𝜙(ri)
𝜕v

= 𝜏 |{i : ri > 0}| − (1 − 𝜏) |{i : ri < 0}|

I (roughly speaking) for optimal v we have

𝜏 |{i : ri > 0}| = (1 − 𝜏) |{i : ri < 0}|

I and so for optimal v, 𝜏m = |{i : ri < 0}|
I 𝜏-quantile of optimal residuals is zero
I hence the name quantile regression
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Example

I time series xt, t = 0, 1, 2, . . .
I auto-regressive predictor:

x̂t+1 = 𝛽T (xt, . . . , xt−M) − v

I M = 10 is memory of predictor
I use quantile regression for 𝜏 = 0.1, 0.5, 0.9
I at each time t, gives three one-step-ahead predictions:

x̂0.1
t+1, x̂0.5

t+1, x̂0.9
t+1
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Example
time series xt
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Example
xt and predictions x̂0.1

t+1, x̂0.5
t+1, x̂0.9

t+1 (training set, t = 0, . . . , 399)
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Example
xt and predictions x̂0.1

t+1, x̂0.5
t+1, x̂0.9

t+1 (test set, t = 400, . . . , 449)
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Example
residual distributions for 𝜏 = 0.9, 0.5, and 0.1 (training set)

CVXPY x NASA Course 2024 28



Example
residual distributions for 𝜏 = 0.9, 0.5, and 0.1 (test set)
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Data model

I given data (xi, yi) ∈ X × Y, i = 1, . . . ,m
I for X = Rn, x is feature vector
I for Y = R, y is (real) outcome or label
I for Y = {−1, 1}, y is (boolean) outcome

I find model or predictor 𝜓 : X → Y so that 𝜓(x) ≈ y
for data (x, y) that you haven’t seen

I for Y = R, 𝜓 is a regression model
I for Y = {−1, 1}, 𝜓 is a classifier
I we choose 𝜓 based on observed data, prior knowledge
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Loss minimization model

I data model parametrized by 𝜃 ∈ Rn

I loss function L : X ×Y × Rn → R
I L(xi, yi, 𝜃) is loss (miss-fit) for data point (xi, yi),

using model parameter 𝜃
I choose 𝜃; then model is

𝜓(x) = argmin
y

L(x, y, 𝜃)
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Model fitting via regularized loss minimization

I regularization r : Rn → R ∪ {∞}
I r(𝜃) measures model complexity, enforces constraints, or represents prior
I choose 𝜃 by minimizing regularized loss

(1/m)
∑︁

i
L(xi, yi, 𝜃) + r(𝜃)

I for many useful cases, this is a convex problem
I model is 𝜓(x) = argminy L(x, y, 𝜃)
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Examples

model L(x, y, 𝜃) 𝜓(x) r(𝜃)
least-squares (𝜃Tx − y)2 𝜃Tx 0
ridge regression (𝜃Tx − y)2 𝜃Tx 𝜆‖𝜃‖2

2
lasso (𝜃Tx − y)2 𝜃Tx 𝜆‖𝜃‖1
logistic classifier log(1 + exp(−y𝜃Tx)) sign(𝜃Tx) 0
SVM (1 − y𝜃Tx)+ sign(𝜃Tx) 𝜆‖𝜃‖2

2

I 𝜆 > 0 scales regularization
I all lead to convex fitting problems
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Example

I original (boolean) features z ∈ {0, 1}10

I (boolean) outcome y ∈ {−1, 1}
I new feature vector x ∈ {0, 1}55 contains all products zizj

(co-occurence of pairs of original features)
I use logistic loss, ℓ1 regularizer
I training data has m = 200 examples; test on 100 examples
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Example
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Example
selected features zizj, 𝜆 = 0.01
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Maximum likelihood estimation

I parametric distribution estimation: choose from a family of densities px (y), indexed by a
parameter x (often denoted 𝜃)

I we take px (y) = 0 for invalid values of x
I px (y), as a function of x, is called likelihood function
I l(x) = log px (y), as a function of x, is called log-likelihood function

I maximum likelihood estimation (MLE): choose x to maximize px (y) (or l(x))
I a convex optimization problem if log px (y) is concave in x for fixed y
I not the same as log px (y) concave in y for fixed x, i.e., px (y) is a family of log-concave densities

CVXPY x NASA Course 2024 39



Linear measurements with IID noise

linear measurement model
yi = aT

i x + vi, i = 1, . . . ,m

I x ∈ Rn is vector of unknown parameters
I vi is IID measurement noise, with density p(z)
I yi is measurement: y ∈ Rm has density px (y) =

∏m
i=1 p(yi − aT

i x)

maximum likelihood estimate: any solution x of

maximize l(x) = ∑m
i=1 log p(yi − aT

i x)

(y is observed value)
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Examples
I Gaussian noise N(0, 𝜎2): p(z) = (2𝜋𝜎2)−1/2e−z2/(2𝜎2) ,

l(x) = −m
2

log(2𝜋𝜎2) − 1
2𝜎2

m∑︁
i=1

(aT
i x − yi)2

ML estimate is least-squares solution
I Laplacian noise: p(z) = (1/(2a))e−|z |/a,

l(x) = −m log(2a) − 1
a

m∑︁
i=1

|aT
i x − yi |

ML estimate is ℓ1-norm solution
I uniform noise on [−a, a]:

l(x) =
{
−m log(2a) |aT

i x − yi | ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aT
i x − yi | ≤ a
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Logistic regression
I random variable y ∈ {0, 1} with distribution

p = prob(y = 1) = exp(aTu + b)
1 + exp(aTu + b)

I a, b are parameters; u ∈ Rn are (observable) explanatory variables
I estimation problem: estimate a, b from m observations (ui, yi)
I log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log

(
k∏

i=1

exp(aTui + b)
1 + exp(aTui + b)

m∏
i=k+1

1
1 + exp(aTui + b)

)
=

k∑︁
i=1

(aTui + b) −
m∑︁

i=1
log(1 + exp(aTui + b))

concave in a, b
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Example
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I n = 1, m = 50 measurements; circles show points (ui, yi)
I solid curve is ML estimate of p = exp(au + b)/(1 + exp(au + b))
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Gaussian covariance estimation

I fit Gaussian distribution N(0,Σ) to observed data y1, . . . , yN

I log-likelihood is

l(Σ) =
1
2

N∑︁
k=1

(
−2𝜋n − log detΣ − yTΣ−1y

)
=

N
2

(
−2𝜋n − log detΣ − trΣ−1Y

)
with Y = (1/N)∑N

k=1 ykyT
k , the empirical covariance

I l is not concave in Σ (the log detΣ term has the wrong sign)

I with no constraints or regularization, MLE is empirical covariance Σml = Y
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Change of variables

I change variables to S = Σ−1

I recover original parameter via Σ = S−1

I S is the natural parameter in an exponential family description of a Gaussian

I in terms of S, log-likelihood is

l(S) = N
2
(−2𝜋n + log det S − tr SY)

which is concave

I (a similar trick can be used to handle nonzero mean)
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