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Regression and Statistical Estimation
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Homework Review
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Sensitivity Analysis

> Let p*(u, v) represent the optimal value of the following perturbed optimization problem

minimize  fo(x)
subjectto fi(x) <w;, i=1,...,m
hi(x) <v;, i=1,...,p
> CVXPY computes the dual variables A* € R”, v* € R?

> If p*(u, v) is differentiable at u = 0, v = 0, then

_*0.0 . dp*(0.0 (0).

A =
du dv

> More generally,
p*(u,v) = p*(0,0) — Ty —v*Ty,

» Convex Optimization, §5.6.
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Sensitivity analysis homework

> Consider the convex optimization problem
minimize  fy(x)
subjectto  fi(x) <
Ax=D>

> variable x € R", parametrized by s € R
> 1* the optimal dual variable for the inequality constraint with s = snom.
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Sensitivity analysis homework

If A* is large, then decreasing s below snom
> might decrease the optimal value
> will increase the optimal value a lot
» can leave the optimal value unchanged
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Sensitivity analysis homework

If A* is large, then increasing s above snom
> will decrease the optimal value a lot
> will increase the optimal value a lot
» can leave the optimal value unchanged
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Sensitivity analysis homework

If A* = 0, then increasing s above Spom
» can decrease the objective value
> can increase the objective value
> will leave the optimal value unchanged
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Robust Kalman filtering

> the Kalman filter works well when v, and w;, are Gaussian
> we can use a robust optimization approach to make the filter more robust to outliers
> using the Huber penalty function, we can solve

minimize Zﬁgl de(w) +7d5,(v)
subjectto  x;41 = Ax; + Bw;
yi = Cx; + vy,

> where ¢ encodes our understanding for the noise in the state transitions
> where ¢, encodes our understanding for the noise in the observations
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Huber penalty function

WP lul <M
P () ‘{ MQlul-M) |u| > M

Bhub (1)

0.5

\
-1.5 -1 -0.5

> linear growth for large u makes approximation less sensitive to outliers
> called a robust penalty
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Example

20r o

[

> 42 points (circles) t;, y;, with two outliers
> affine function f(¢) = a + Bt fit using quadratic (dashed) and Huber (solid) penalty
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Notebook solutions

> https://marimo.app/1l/fqixko
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https://marimo.app/l/fqixko
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Penalty function approximation
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Penalty function approximation

minimize  ¢(r1) +-- - + (1)
subjectto r=Ax-b

(A € R™" ¢ : R — Ris a convex penalty function)

examples 2

> quadratic: ¢(u) = u? log barrier
adratic

n
[

» deadzone-linear with width a:

S
¢(u) = max{0, [u| — a} 5 ! deadzone-linear
> log-barrier with limit a: 0.5
2 _ 2
¢(u) = { Ooa log(l (u/a) ) Ll/zll;vjlse —01.5 -1 -0.5 l(; 0.5 1 1.5
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Example: histograms of residuals

A € R!%30: shape of penalty function affects distribution of residuals

40

absolute value ¢ () = |u|

L oen 0 Oemeei0 o o =0 [n L

0

10F

square ¢(u) = u?
0

20

deadzone ¢(u) = max{0, |u|—0.5}

log-barrier ¢(u) = —log(1 — u?)
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Regression
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Standard regression

mean of optimal residuals is zero

> givendata (x;,y;)) e R" xR, i=1,...,m

> fit linear (affine) model §; = B7x; —v, B € R, veR
> residuals are r; = §; — y;

> least-squares: choose 3, v to minimize ||r|3 = 3, r?
>

»

can add (Tychonov) regularization: with 4 > 0,

minimize  ||7][3 + A/|81|3
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Robust (Huber) regression

> replace square with Huber function

2
| ou lu| <M
$(u) ‘{ Mu—-M?* |u| >M

M > 0 is the Huber threshold

> same as least-squares for small residuals, but allows (some) large residuals
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Example

m = 450 measurements, n = 300 regressors

choose B"™¢; x; ~ N(0,1)

sety; = (B™) xi+ €&, 6 ~ N(0,1)

with probability p, replace y; with —y;

data has fraction p of (non-obvious) wrong measurements
distribution of ‘good’ and ‘bad’ y; are the same

try to recover 8¢ € R” from measurements y € R”

vV VvV Vv YV V. VY VY

‘prescient’ version: we know which measurements are wrong
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Example

50 problem instances, p varying from 0 to 0.15

14

12}

— Least squares

— Huber

— Prescient
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Example

0.05 T T : - - T
— Huber
— Prescient /
N
Iooo3f / \ I,"
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0.00 001 002 003 0.04
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Quantile regression
> tilted €| penalty: for T € (0, 1),

¢() =)y + (1 =7) ()~ = (1/2)|ul + (7 = 1/2)u

v

quantile regression: choose S, v to minimize Y; ¢(r;)

v

7 = 0.5: equal penalty for over- and under-estimating

v

7 = 0.1: 9% more penalty for under-estimating

v

7 =0.9: 9% more penalty for over-estimating
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Quantile regression

> forr; # 0,
0% ¢(ri . .
a—qj()=T|{1:r[>0}|—(1—T)|{1:r[<0}|
> (roughly speaking) for optimal v we have
THi:r >0 =>0=-7){i:r <0}
» and so for optimal v, Tm = |{i : r; < 0}|
>

7-quantile of optimal residuals is zero

\4

hence the name quantile regression
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Example

> time series x;, 1 =0,1,2,...
> auto-regressive predictor:

X1 = ﬁT(xt, ceXi—M) =V

> M = 10 is memory of predictor
> use quantile regression for T = 0.1,0.5,0.9

> at each time ¢, gives three one-step-ahead predictions:

~0.1 0.5 ~0.9
Aerls Aeils X1
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Example

time series x;

0.0

o 50 100 130 200 250 300 330 400 450
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Example

x; and predictions £%:1, 223, -9 (training set, 1 = 0, ..., 399)

10 . . ITralnlnlg datal
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Example

A

x; and predictions X
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0.1 20.5 209 —

X1 X (test set, t = 400, . . .,449)
. ITest data .
Ly

=

400 410 420 430 440 450
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Example

residual distributions for 7 = 0.9, 0.5, and 0.1 (training set)

10
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Cumulative density

02

06 . 0.0
Residual
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Example

residual distributions for 7 = 0.9, 0.5, and 0.1 (test set)

Cumulative density
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Outline

Model Fitting
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Data model

givendata (x;,y;)) e X x Y, i=1,...,m
for X = R", x is feature vector
for Y =R, y is (real) outcome or label

vV v vy

forY = {-1, 1}, y is (boolean) outcome

» find model or predictor y : X — Y sothat y(x) ~ y
for data (x, y) that you haven't seen

> for Y =R, y is a regression model
> for Y = {-1, 1}, y is a classifier
> we choose ¢ based on observed data, prior knowledge
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Loss minimization model

> data model parametrized by 6 € R"
> Joss function L : X x Y x R" - R

> L(x;,yi,0) is loss (miss-fit) for data point (x;, y;),
using model parameter 6

v

choose 6; then model is
W (x) = argmin L(x, y, 0)
y
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Model fitting via regularized loss minimization

> regularization r : R* — R U {0}
> r(6) measures model complexity, enforces constraints, or represents prior
» choose 6 by minimizing regularized loss

(1/m) > L(xi,yi,0) +7(6)

> for many useful cases, this is a convex problem
> model is ¢ (x) = argmin, L(x, y, 0)
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Examples

model L(x,y,0) U (x) r(0)
least-squares (0Tx —y)? 0Tx 0
ridge regression (67x —y)? 07x Alleli3
lasso (67x —y)? 07 x A6
logistic classifier log(1+exp(—y#’x)) sign(67x) 0
SVM (1 —y0Tx), sign(07x) 21013

» 1 > 0 scales regularization
> all lead to convex fitting problems
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Example

> original (boolean) features z € {0, 1}'°
» (boolean) outcome y € {-1, 1}

> new feature vector x € {0, 1} contains all products z;z;
(co-occurence of pairs of original features)

> use logistic loss, ¢; regularizer

> training data has m = 200 examples; test on 100 examples
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Example
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Example

selected features z;zj, 4 = 0.01
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Outline

Maximum likelihood estimation
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Maximum likelihood estimation

> parametric distribution estimation: choose from a family of densities p,(y), indexed by a
parameter x (often denoted 6)

> we take p,(y) = 0 for invalid values of x
> p.(y), as a function of x, is called likelihood function
> [(x) =logpx(y), as a function of x, is called log-likelihood function

» maximum likelihood estimation (MLE): choose x to maximize p,(y) (or [(x))
» a convex optimization problem if log p,(y) is concave in x for fixed y
> not the same as log p,(y) concave in y for fixed x, i.e., p,(y) is a family of log-concave densities
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Linear measurements with IID noise

linear measurement model
y,-:al-Tx+v,-, i=1,....m

> x € R" is vector of unknown parameters
> ; is IID measurement noise, with density p(z)

> y; is measurement: y € R” has density p.(y) = [1%, p(yi — a! x)

maximum likelihood estimate: any solution x of
maximize [(x) = X7, logp(y; — a! x)

(v is observed value)
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Examples

> Gaussian noise N (0, 02): p(z) = (2710—2)—1/26—22/(202),
m 1 &
_ 2 2 : T 52
l(x) = - ) 10g(27TO' ) - r._z Z (Cli X —y,)

ML estimate is least-squares solution
> Laplacian noise: p(z) = (1/(2a))e” /2,

.l m
I(x) = -mlog(2a) - = > lafx - yi
i=1

ML estimate is ¢;-norm solution
» uniform noise on [—a, a]:

I(x) =

otherwise

ML estimate is any x with |alx — y;| < a
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Logistic regression
» random variable y € {0, 1} with distribution

exp(a’u + b)

= b =)= — 8
p = prob(y =1) 1 +exp(aTu+b)

> a, b are parameters; u € R" are (observable) explanatory variables
> estimation problem: estimate a, b from m observations (u;, y;)
» log-likelihood function (fory; = -+ =yt =1, yge1 = -+ - =y = 0):

I(a,b)

k T
exp(a' u; + b)
1
. 1—1[ 1 +exp(alu; + b) 1 1_[ 1+ exp(aTul +b)

k

Z(aTu,- +b) - Z log(1 +exp(a’u; + b))

i=1 i=1

concave ina, b
CVXPY x NASA Course 2024
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Example

prob(y = 1)

> n =1, m = 50 measurements; circles show points (u;, y;)
> solid curve is ML estimate of p = exp(au + b) /(1 + exp(au + b))
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Gaussian covariance estimation

> fit Gaussian distribution N (0, X) to observed data yy, ..., yn
> log-likelihood is

N

kz; (—27m —logdetX — yTZ_ly)

1

= Nl
—_—

I(2)

—2nn —logdetX — tr Z_lY)

with Y = (1/N) X}, wy!, the empirical covariance
> [is not concave in X (the log det X term has the wrong sign)

> with no constraints or regularization, MLE is empirical covariance =™ = Y
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Change of variables

> change variables to § = £~!

> recover original parameter via ¥ = 5!

> §is the natural parameter in an exponential family description of a Gaussian
> in terms of S, log-likelihood is
I(S) = %v (—27n +logdet S — tr SY)
which is concave
> (a similar trick can be used to handle nonzero mean)
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