# CVXPY x NASA Course 2024

Philipp Schiele Steven Diamond Parth Nobel Akshay Agrawal

July 8, 2024



**Regression and Statistical Estimation** 

# Outline

#### Homework Review

Penalty function approximation

Regression

Model Fitting

Maximum likelihood estimation

### **Sensitivity Analysis**

Let  $p^{\star}(u, v)$  represent the optimal value of the following perturbed optimization problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le u_i$ ,  $i = 1, ..., m$   
 $h_i(x) \le v_i$ ,  $i = 1, ..., p$ 

► CVXPY computes the dual variables  $\lambda^{\star} \in \mathbf{R}^{m}$ ,  $v^{\star} \in \mathbf{R}^{p}$ 

• If  $p^{\star}(u, v)$  is differentiable at u = 0, v = 0, then

$$\lambda^{\star} = -\frac{dp^{\star}(0,0)}{du}, \quad \nu^{\star} = -\frac{dp^{\star}(0,0)}{dv}(0)$$

More generally,

$$p^{\star}(u,v) \ge p^{\star}(0,0) - \lambda^{\star T} u - v^{\star T} v.$$

Convex Optimization, §5.6.

Consider the convex optimization problem

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_1(x) \leq s \\ & Ax = b \end{array}$ 

▶ variable  $x \in \mathbf{R}^n$ , parametrized by  $s \in \mathbf{R}$ 

>  $\lambda^*$  the optimal dual variable for the inequality constraint with  $s = s_{nom}$ .

If  $\lambda^{\star}$  is large, then decreasing *s* below  $s_{nom}$ 

- might decrease the optimal value
- will increase the optimal value a lot
- can leave the optimal value unchanged

If  $\lambda^{\star}$  is large, then increasing *s* above  $s_{nom}$ 

- will decrease the optimal value a lot
- will increase the optimal value a lot
- can leave the optimal value unchanged

- If  $\lambda^{\star} = 0$ , then increasing *s* above  $s_{\text{nom}}$ 
  - can decrease the objective value
  - can increase the objective value
  - will leave the optimal value unchanged

#### **Robust Kalman filtering**

- the Kalman filter works well when  $v_t$  and  $w_t$  are Gaussian
- we can use a robust optimization approach to make the filter more robust to outliers
- using the Huber penalty function, we can solve

minimize 
$$\sum_{t=0}^{N-1} \phi_{\epsilon}(w_{t}) + \tau \phi_{\eta}(v_{t})$$
  
subject to 
$$x_{t+1} = Ax_{t} + Bw_{t}$$
$$y_{t} = Cx_{t} + v_{t},$$

- where  $\phi_{\epsilon}$  encodes our understanding for the noise in the state transitions
- where  $\phi_{\eta}$  encodes our understanding for the noise in the observations

#### Huber penalty function



linear growth for large u makes approximation less sensitive to outliers

called a robust penalty



- 42 points (circles)  $t_i$ ,  $y_i$ , with two outliers
- affine function  $f(t) = \alpha + \beta t$  fit using quadratic (dashed) and Huber (solid) penalty

# **Notebook solutions**

https://marimo.app/l/fqixko

#### Outline

Homework Review

#### Penalty function approximation

Regression

Model Fitting

Maximum likelihood estimation

#### Penalty function approximation

minimize  $\phi(r_1) + \dots + \phi(r_m)$ subject to r = Ax - b

 $(A \in \mathbf{R}^{m \times n}, \phi : \mathbf{R} \to \mathbf{R} \text{ is a convex penalty function})$ 

#### examples

- quadratic:  $\phi(u) = u^2$
- deadzone-linear with width a:

$$\phi(u) = \max\{0, |u| - a\}$$

log-barrier with limit a:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$



#### CVXPY x NASA Course 2024

#### Example: histograms of residuals

 $A \in \mathbf{R}^{100 \times 30}$ ; shape of penalty function affects distribution of residuals

absolute value  $\phi(u) = |u|$ 

square  $\phi(u) = u^2$ 

deadzone  $\phi(u) = \max\{0, |u| - 0.5\}$ 

log-barrier 
$$\phi(u) = -\log(1 - u^2)$$



#### Outline

Homework Review

Penalty function approximation

#### Regression

Model Fitting

Maximum likelihood estimation

#### **Standard regression**

- given data  $(x_i, y_i) \in \mathbf{R}^n \times \mathbf{R}, i = 1, \dots, m$
- ► fit linear (affine) model  $\hat{y}_i = \beta^T x_i \nu, \beta \in \mathbf{R}^n, \nu \in \mathbf{R}$
- residuals are  $r_i = \hat{y}_i y_i$
- ► least-squares: choose  $\beta$ , *v* to minimize  $||r||_2^2 = \sum_i r_i^2$
- mean of optimal residuals is zero
- can add (Tychonov) regularization: with  $\lambda > 0$ ,

minimize  $||r||_2^2 + \lambda ||\beta||_2^2$ 

### **Robust (Huber) regression**

replace square with Huber function

$$\phi(u) = \begin{cases} u^2 & |u| \le M\\ 2Mu - M^2 & |u| > M \end{cases}$$

M > 0 is the Huber threshold



same as least-squares for small residuals, but allows (some) large residuals

- m = 450 measurements, n = 300 regressors
- choose  $\beta^{\text{true}}$ ;  $x_i \sim \mathcal{N}(0, I)$
- set  $y_i = (\beta^{\text{true}})^T x_i + \epsilon_i, \, \epsilon_i \sim \mathcal{N}(0, 1)$
- with probability p, replace  $y_i$  with  $-y_i$
- data has fraction p of (non-obvious) wrong measurements
- distribution of 'good' and 'bad' y<sub>i</sub> are the same
- ▶ try to recover  $\beta^{\text{true}} \in \mathbf{R}^n$  from measurements  $y \in \mathbf{R}^m$
- 'prescient' version: we know which measurements are wrong

50 problem instances, p varying from 0 to 0.15





## **Quantile regression**

• *tilted*  $\ell_1$  *penalty*: for  $\tau \in (0, 1)$ ,

$$\phi(u) = \tau(u)_{+} + (1 - \tau)(u)_{-} = (1/2)|u| + (\tau - 1/2)u$$



- quantile regression: choose  $\beta$ , *v* to minimize  $\sum_i \phi(r_i)$
- $\blacktriangleright$   $\tau = 0.5$ : equal penalty for over- and under-estimating
- $\tau = 0.1$ : 9× more penalty for under-estimating
- $\tau = 0.9$ : 9× more penalty for over-estimating

#### **Quantile regression**

► for 
$$r_i \neq 0$$
,  
$$\frac{\partial \sum_i \phi(r_i)}{\partial v} = \tau |\{i : r_i > 0\}| - (1 - \tau) |\{i : r_i < 0\}|$$

(roughly speaking) for optimal v we have

$$\tau |\{i: r_i > 0\}| = (1 - \tau) |\{i: r_i < 0\}|$$

- and so for optimal v,  $\tau m = |\{i : r_i < 0\}|$
- $\tau$ -quantile of optimal residuals is zero
- hence the name quantile regression

- time series  $x_t$ , t = 0, 1, 2, ...
- auto-regressive predictor:

$$\hat{x}_{t+1} = \beta^T(x_t, \dots, x_{t-M}) - v$$

- M = 10 is memory of predictor
- use quantile regression for  $\tau = 0.1, 0.5, 0.9$
- at each time t, gives three one-step-ahead predictions:

$$\hat{x}_{t+1}^{0.1}, \quad \hat{x}_{t+1}^{0.5}, \quad \hat{x}_{t+1}^{0.9}$$

time series  $x_t$ 



CVXPY x NASA Course 2024

 $x_t$  and predictions  $\hat{x}_{t+1}^{0.1}, \hat{x}_{t+1}^{0.5}, \hat{x}_{t+1}^{0.9}$  (training set,  $t = 0, \dots, 399$ )



 $x_t$  and predictions  $\hat{x}_{t+1}^{0.1}$ ,  $\hat{x}_{t+1}^{0.5}$ ,  $\hat{x}_{t+1}^{0.9}$  (test set,  $t = 400, \dots, 449$ )



residual distributions for  $\tau = 0.9, 0.5, \text{ and } 0.1$  (training set)



CVXPY x NASA Course 2024

residual distributions for  $\tau = 0.9, 0.5, \text{ and } 0.1$  (test set)



#### Outline

Homework Review

Penalty function approximation

Regression

Model Fitting

Maximum likelihood estimation

#### Data model

- given data  $(x_i, y_i) \in X \times \mathcal{Y}, i = 1, \dots, m$
- for  $X = \mathbf{R}^n$ , x is feature vector
- for  $\mathcal{Y} = \mathbf{R}$ , y is (real) *outcome* or *label*
- for  $\mathcal{Y} = \{-1, 1\}$ , y is (boolean) outcome
- find model or predictor ψ : X → Y so that ψ(x) ≈ y for data (x, y) that you haven't seen
- for  $\mathcal{Y} = \mathbf{R}, \psi$  is a *regression model*
- for  $\mathcal{Y} = \{-1, 1\}, \psi$  is a *classifier*
- we choose  $\psi$  based on observed data, prior knowledge

#### Loss minimization model

- data model parametrized by  $\theta \in \mathbf{R}^n$
- loss function  $L: X \times \mathcal{Y} \times \mathbf{R}^n \to \mathbf{R}$
- $L(x_i, y_i, \theta)$  is loss (miss-fit) for data point  $(x_i, y_i)$ , using model parameter  $\theta$
- choose  $\theta$ ; then model is

$$\psi(x) = \operatorname*{argmin}_{y} L(x, y, \theta)$$

### Model fitting via regularized loss minimization

• regularization  $r : \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$ 

▶  $r(\theta)$  measures model complexity, enforces constraints, or represents prior

• choose  $\theta$  by minimizing *regularized loss* 

$$(1/m)\sum_{i}L(x_i, y_i, \theta) + r(\theta)$$

- for many useful cases, this is a convex problem
- model is  $\psi(x) = \operatorname{argmin}_{y} L(x, y, \theta)$

| model               | $L(x, y, \theta)$              | $\psi(x)$          | r(	heta)                          |
|---------------------|--------------------------------|--------------------|-----------------------------------|
| least-squares       | $(\theta^T x - y)^2$           | $\theta^T x$       | 0                                 |
| ridge regression    | $(\theta^T x - y)^2$           | $\theta^T x$       | $\lambda \ \theta\ _2^2$          |
| lasso               | $(\theta^T x - y)^2$           | $\theta^T x$       | $\lambda \  	heta \ _1^{	ilde 1}$ |
| logistic classifier | $\log(1 + \exp(-y\theta^T x))$ | $sign(\theta^T x)$ | 0                                 |
| SVM                 | $(1 - y\theta^T x)_+$          | $sign(\theta^T x)$ | $\lambda \ \theta\ _2^2$          |

- ►  $\lambda > 0$  scales regularization
- all lead to convex fitting problems

- original (boolean) features  $z \in \{0, 1\}^{10}$
- ▶ (boolean) outcome  $y \in \{-1, 1\}$
- ▶ new feature vector  $x \in \{0, 1\}^{55}$  contains all products  $z_i z_j$  (co-occurence of pairs of original features)
- use logistic loss,  $\ell_1$  regularizer
- training data has m = 200 examples; test on 100 examples



selected features  $z_i z_j$ ,  $\lambda = 0.01$ 



#### Outline

Homework Review

Penalty function approximation

Regression

Model Fitting

Maximum likelihood estimation

#### **Maximum likelihood estimation**

- parametric distribution estimation: choose from a family of densities *p<sub>x</sub>(y)*, indexed by a parameter *x* (often denoted *θ*)
- we take  $p_x(y) = 0$  for invalid values of x
- $p_x(y)$ , as a function of x, is called **likelihood function**
- l(x) =  $\log p_x(y)$ , as a function of x, is called **log-likelihood function**

- **maximum likelihood estimation (MLE):** choose *x* to maximize  $p_x(y)$  (or l(x))
- a convex optimization problem if  $\log p_x(y)$  is concave in x for fixed y
- not the same as  $\log p_x(y)$  concave in y for fixed x, *i.e.*,  $p_x(y)$  is a family of log-concave densities

#### Linear measurements with IID noise

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $x \in \mathbf{R}^n$  is vector of unknown parameters
- $v_i$  is IID measurement noise, with density p(z)
- ▶  $y_i$  is measurement:  $y \in \mathbf{R}^m$  has density  $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

maximum likelihood estimate: any solution x of

maximize 
$$l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$

(y is observed value)

• Gaussian noise 
$$\mathcal{N}(0, \sigma^2)$$
:  $p(z) = (2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$ ,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^m (a_i^T x - y_i)^2$$

ML estimate is least-squares solution

• Laplacian noise:  $p(z) = (1/(2a))e^{-|z|/a}$ ,

$$l(x) = -m\log(2a) - \frac{1}{a}\sum_{i=1}^{m} |a_i^T x - y_i|$$

ML estimate is  $\ell_1$ -norm solution

• uniform noise on [-a, a]:

$$l(x) = \begin{cases} -m\log(2a) & |a_i^T x - y_i| \le a, \quad i = 1, \dots, m \\ -\infty & \text{otherwise} \end{cases}$$

ML estimate is any *x* with  $|a_i^T x - y_i| \le a$ 

CVXPY x NASA Course 2024

#### **Logistic regression**

▶ random variable  $y \in \{0, 1\}$  with distribution

$$p = \mathbf{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- ▶ a, b are parameters;  $u \in \mathbf{R}^n$  are (observable) explanatory variables
- estimation problem: estimate a, b from m observations  $(u_i, y_i)$
- ▶ log-likelihood function (for  $y_1 = \cdots = y_k = 1$ ,  $y_{k+1} = \cdots = y_m = 0$ ):

$$l(a,b) = \log\left(\prod_{i=1}^{k} \frac{\exp(a^{T}u_{i}+b)}{1+\exp(a^{T}u_{i}+b)} \prod_{i=k+1}^{m} \frac{1}{1+\exp(a^{T}u_{i}+b)}\right)$$
$$= \sum_{i=1}^{k} (a^{T}u_{i}+b) - \sum_{i=1}^{m} \log(1+\exp(a^{T}u_{i}+b))$$

concave in *a*, *b* 

CVXPY x NASA Course 2024



▶ n = 1, m = 50 measurements; circles show points  $(u_i, y_i)$ 

Solid curve is ML estimate of  $p = \exp(au + b)/(1 + \exp(au + b))$ 

#### **Gaussian covariance estimation**

Fit Gaussian distribution  $\mathcal{N}(0, \Sigma)$  to observed data  $y_1, \ldots, y_N$ 

log-likelihood is

$$l(\Sigma) = \frac{1}{2} \sum_{k=1}^{N} \left( -2\pi n - \log \det \Sigma - y^T \Sigma^{-1} y \right)$$
$$= \frac{N}{2} \left( -2\pi n - \log \det \Sigma - \mathbf{tr} \Sigma^{-1} Y \right)$$

with  $Y = (1/N) \sum_{k=1}^{N} y_k y_k^T$ , the empirical covariance

- l is **not** concave in  $\Sigma$  (the log det  $\Sigma$  term has the wrong sign)
- with no constraints or regularization, MLE is empirical covariance  $\Sigma^{ml} = Y$

#### **Change of variables**

- change variables to  $S = \Sigma^{-1}$
- recover original parameter via  $\Sigma = S^{-1}$
- S is the natural parameter in an exponential family description of a Gaussian
- ▶ in terms of *S*, log-likelihood is

$$l(S) = \frac{N}{2} \left( -2\pi n + \log \det S - \operatorname{tr} SY \right)$$

which is concave

(a similar trick can be used to handle nonzero mean)