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To the notebook

▶ https://marimo.io/p/@cvxpy/optimal-trajectory-sol
▶ The solution to 2(c) relies on background knowledge we did not cover
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Challenge question
Background knowledge: At the minimum of a quadratic, its gradient is 0
▶ Differentiating objective with respect to t gives

𝜕L
𝜕t

(c★, t★) =
m∑︁

i=1
2
(
−∥ui∥2

2 + 2uT
i c★ + t★

)
= 0

▶ Setting equal to zero and solving for t★

t★ =
1
m

m∑︁
i=1

(
∥ui∥2

2 − 2uT
i c★

)
▶ Adding ∥c★∥2

2 to both sides and recalling the expansion we had earlier,

t★ + ∥c★∥2
2 =

1
m

m∑︁
i=1

∥ui − c★∥2
2 ≥ 0.
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Questions to answer today

▶ Can we quantify how much a particular constraint matters to an optimization problem?
▶ When constraints have physical interpretation, can we learn more about the physical

system?
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Constraints

▶ Sometimes constraints in an optimization problem don’t matter
▶

minimize |x − 1|
subject to x ≥ −10

solution is p★ = 0, x★ = 1, regardless of the constraint

▶ Often, contraints DO matter
minimize |x − 1|
subject to x ≥ 10

solution is p★ = 9, x★ = 10
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Formal statement

▶ Let p★(u) represent the optimal value of the following family of optimization problems

minimize f0 (x)
subject to f1 (x) ≤ u

▶ p★ : R → R is a function of the perturbation and has units of the objective
▶ CVXPY computes

dp★

du
(0)

▶ These derivatives are meaningful
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Example

▶ Words:

minimize average force on a 1 kg object as it travels in 1D

subject to from rest at position 0 m
to rest at position 10 m
in 3 s
subject to an acceleration limit

▶ Math (using trapezoidal integration for the ODE):

minimize 1
n
∑n

i=1 1 kg × n
3 s |vi − vi−1 |

subject to x0 = 0 m, v0 = 0 m s−1

xn = 10 m, vn = 0 m s−1

xi = xi−1 + 3 s
2n (vi + vi−1) , i = 1, . . . , n

maxi

(
3 s
T |vi − vi−1 |

)
≤ 6 m s−2 + u
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Example
Trajectory depends on u u = 0 m s−2, p★ = 8.85 N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (s)

0

2

4

6

8

10 x(t)
v(t)
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Example
Trajectory depends on u u = 1 m s−2, p★ = 8.33 N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (s)

0

2

4

6

8

10 x(t)
v(t)
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Example
Trajectory depends on u u = 10 m s−2, p★ = 7.22 N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (s)

0

2

4

6

8

10 x(t)
v(t)
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Example
Trajectory depends on u u = 100 m s−2, p★ = 6.75 N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (s)

0

2

4

6

8

10 x(t)
v(t)

No impact on the trajectoryCVXPY x NASA Course 2024 21



Example
Trajectory depends on u u = −1 m s−2, p★ = 10.03 N

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (s)

0

2

4

6

8

10 x(t)
v(t)
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Dual variables

How does the average force change given small tweaks in u?
▶ We measure it with the derivative!
▶

dp★

du
(0)

is called the dual variable of the acceleration constraint
▶ For inequality constraints, often denoted 𝜆

▶ In our example, 𝜆 has units kg
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Inequality constraints sometimes don’t matter

▶ When an inequality constraint has no impact on an optimization problem, 𝜆 = 0
▶ Specifically, whenever an inequality constraint is not tight, 𝜆 = 0 (and other rare times too)
▶ Complimentary slackness

At least one of 𝜆 or f1 (x★) is equal to 0

▶ In our example,
– f1 (v) = maxi

(
3 s
T |vi − vi−1 |

)
− 6 m s−2

– Complimentary slackness implies “if changing the acceleration limit doesn’t change the cost of
the optimal trajectory, then the mass hits the acceleration limit at at least one point in time”
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Dual variables of equality constriants

▶ Nothing special like complimentary slackness
▶ They are just the derivative (when it exists) of the objective as you the equality constraint

changes
▶ Interpreting the sign can be subtle
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The control/signal duality

▶ Imagine when we have a nice model for our system
▶ Controllers turn current state estimates into control signals
▶ Signal filters turn historical observations of a system and historical control inputs into state

estimates
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Problem setting

▶ Linear dynamical system
xt+1 = Axt + But, yt = Cxt

▶ Finite time horizon
▶ Controlled must be ut = Ftx̂t

▶ Control problem is to pick ut to control xt given x̂t

▶ Signal problem is to find x̂t to estimate xt given historical yt, ut
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Linear quadratic regulator (LQR) control

▶ Objective is to minimize

J
(
{xt}T

t=0, {ut}T−1
t=0

)
= xT

TQxT +
T−1∑︁
t=0

(xT
t Qxt + uT

t Rut + 2xT
t Nut)

Q,R ⪰ 0
▶ When ut is unconstrained, the optimal solution is

Ft = (R + BTPt+1B)−1 (BTPt+1A + NT )

▶ Pt given by the Riccati equations:

PT = Q
Pt−1 = ATPtA − (ATPtB + N) (R + BTPtB)−1 (BTPtA + NT ) + Q
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Kalman filtering

▶ we can estimate xt for t = 0, . . . ,N by solving the optimization problem

minimize
∑N−1

t=0 ∥wt∥2
2 + 𝜏∥vt∥2

2
subject to xt+1 = Axt + Bwt

yt = Cxt + vt

▶ 𝜏 is a regularization parameter
▶ this is a convex optimization problem

CVXPY x NASA Course 2024 30



LQR + Kalman

▶ Optimality: The Kalman Filter + LQR is optimal for the model

xt+1 = Axt + But + 𝜖t
yt = Cxt + 𝜂t
ut = Ftx̂t
𝜖t ∼ N(0, Σ𝜖 )
𝜂t ∼ N(0, Σ𝜂)

with objective E[J], if A,B,C, Σ𝜖 , Σ𝜂 are known
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What about other models?

▶ We know it is optimal for:
xt+1 = Axt + But + 𝜖t

yt = Cxt + 𝜂t
ut = Ftx̂t
𝜖t ∼ N(0, Σ𝜖 )
𝜂t ∼ N(0, Σ𝜂)

with objective E[J], if A,B,C, Σ𝜖 , Σ𝜂 are known
▶ What about everything else?
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Robust Kalman filtering

▶ the Kalman filter works well when vt and wt are Gaussian
▶ we can use a robust optimization approach to make the filter more robust to outliers
▶ using the Huber loss function, we can solve

minimize
∑N−1

t=0 𝜙𝜖 (xt) + 𝜏𝜙𝜂 (vt)
subject to xt+1 = Axt + Bwt

yt = Cxt + vt,

▶ where 𝜙𝜖 encodes our understanding for the noise in the state transitions
▶ where 𝜙𝜂 encodes our understanding for the noise in the observations
▶ e.g. the rotationally-invariant Huber loss function

𝜙𝜌 (a) =
{

∥a∥2
2 ∥a∥2 ≤ 𝜌

2𝜌∥a∥2 − 𝜌2 ∥a∥2 > 𝜌
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The Huber loss function
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Penalty function approximation

minimize 𝜙(r1) + · · · + 𝜙(rm)
subject to r = Ax − b

(A ∈ Rm×n, 𝜙 : R → R is a convex penalty function)
examples
▶ quadratic: 𝜙(u) = u2

▶ deadzone-linear with width a:

𝜙(u) = max{0, |u| − a}

▶ log-barrier with limit a:

𝜙(u) =
{
−a2 log(1 − (u/a)2) |u| < a
∞ otherwise u

q
(u
)

deadzone-linear

quadratic
log barrier

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2
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Example: histograms of residuals

A ∈ R100×30; shape of penalty function affects distribution of residuals

absolute value 𝜙(u) = |u|

square 𝜙(u) = u2

deadzone 𝜙(u) = max{0, |u|−0.5}

log-barrier 𝜙(u) = − log(1 − u2)

r

−2

−2

−2

−2

−1

−1

−1
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40
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Huber penalty function

𝜙hub (u) =
{

u2 |u| ≤ M
M(2|u| − M) |u| > M

u

q
h
u
b
(u
)

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

▶ linear growth for large u makes approximation less sensitive to outliers
▶ called a robust penalty
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Example

t

f
(t
)

−10 −5 0 5 10

−20

−10

0

10

20

▶ 42 points (circles) ti, yi, with two outliers
▶ affine function f (t) = 𝛼 + 𝛽t fit using quadratic (dashed) and Huber (solid) penalty
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Weird noise model? Can you still regularize for it?

▶ Many assumptions about how the data should look can be imposed
▶ For example, what if we know 𝜖 is so strongly autocorrelated that it should be piecewise

constant
▶ We can impose ∥D𝜈∥1 regularization

D =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 · · · −1 1


imposing first-order sparsity

▶ Expecting noise is being introduced in a low-dimensional linear space? Use the nuclear
norm
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