
CVXPY x NASA Course 2024

Philipp Schiele Steven Diamond Parth Nobel Akshay Agrawal

June 10, 2024

Introduction

Outline

Course overview

Mathematical optimization

Convex optimization

CVXPY x NASA Course 2024 3

Course overview

▶ weekly lectures Mondays 11:30–13:30 ET on Teams
▶ lectures include hands-on exercises for participants

▶ topics covered

June 10 Introduction to convex optimization and CVXPY
June 17 Disciplined convex programming
June 24 Landing a rocket using model predictive control
July 1 Sensitivity analysis and robust Kalman filtering
July 8 Regression and generalized linear models
July 15 Aircraft design using geometric programming
July 22 Code generation for quadcopter control
July 29 Object oriented optimization for power systems

CVXPY x NASA Course 2024 4

Speakers

Philipp Schiele
▶ Completed PhD defense in statistics at LMU Munich

(degree pending conferral)
▶ Postdoc at Stanford

Steven Diamond
▶ PhD in computer science from Stanford
▶ Research scientist at Gridmatic

CVXPY x NASA Course 2024 5

Speakers

Parth Nobel
▶ PhD candidate in electrical engineering at

Stanford
▶ redesigned convex optimization course at

Stanford

Akshay Agrawal
▶ PhD in electrical engineering from Stanford
▶ working on marimo

CVXPY x NASA Course 2024 6

Outline

Course overview

Mathematical optimization

Convex optimization

CVXPY x NASA Course 2024 7

Optimization problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

gi (x) = 0, i = 1, . . . , p

▶ x ∈ Rn is (vector) variable to be chosen (n scalar variables x1, . . . , xn)
▶ f0 is the objective function, to be minimized
▶ f1, . . . , fm are the inequality constraint functions
▶ g1, . . . , gp are the equality constraint functions

▶ variations: maximize objective, multiple objectives, . . .

CVXPY x NASA Course 2024 8

Finding good (or best) actions

▶ x represents some action, e.g.,
– trades in a portfolio
– airplane control surface deflections
– schedule or assignment
– resource allocation

▶ constraints limit actions or impose conditions on outcome
▶ the smaller the objective f0 (x), the better

– total cost (or negative profit)
– deviation from desired or target outcome
– risk
– fuel use

CVXPY x NASA Course 2024 9

Finding good models

▶ x represents the parameters in a model
▶ constraints impose requirements on model parameters (e.g., nonnegativity)
▶ objective f0 (x) is sum of two terms:

– a prediction error (or loss) on some observed data
– a (regularization) term that penalizes model complexity

CVXPY x NASA Course 2024 10

Worst-case analysis (pessimization)

▶ variables are actions or parameters out of our control
(and possibly under the control of an adversary)

▶ constraints limit the possible values of the parameters
▶ minimizing −f0 (x) finds worst possible parameter values

▶ if the worst possible value of f0 (x) is tolerable, you’re OK
▶ it’s good to know what the worst possible scenario can be

CVXPY x NASA Course 2024 11

Optimization-based models

▶ model an entity as taking actions that solve an optimization problem
– an individual makes choices that maximize expected utility
– an organism acts to maximize its reproductive success
– reaction rates in a cell maximize growth
– currents in a circuit minimize total power

▶ (except the last) these are very crude models
▶ and yet, they often work very well

CVXPY x NASA Course 2024 12

Basic use model for mathematical optimization

▶ instead of saying how to choose (action, model)
▶ you articulate what you want (by stating the problem)
▶ then let an algorithm decide on (action, model)

CVXPY x NASA Course 2024 13

Can you solve it?

▶ generally, no
▶ but you can try to solve it approximately, and it often doesn’t matter

▶ the exception: convex optimization
– includes linear programming (LP), quadratic programming (QP), many others
– we can solve these problems reliably and efficiently
– come up in many applications across many fields

CVXPY x NASA Course 2024 14

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)
▶ find a point that minimizes f0 among feasible points near it
▶ can handle large problems, e.g., neural network training
▶ require initial guess, and often, algorithm parameter tuning
▶ provide no information about how suboptimal the point found is

global optimization methods
▶ find the (global) solution
▶ worst-case complexity grows exponentially with problem size
▶ often based on solving convex subproblems

CVXPY x NASA Course 2024 15

Outline

Course overview

Mathematical optimization

Convex optimization

CVXPY x NASA Course 2024 16

Convex optimization

convex optimization problem:

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

▶ variable x ∈ Rn

▶ equality constraints are linear
▶ f0, . . . , fm are convex: for 𝜃 ∈ [0, 1],

fi (𝜃x + (1 − 𝜃)y) ≤ 𝜃fi (x) + (1 − 𝜃)fi (y)

i.e., fi have nonnegative (upward) curvature

CVXPY x NASA Course 2024 17

When is an optimization problem hard to solve?

▶ classical view:
– linear (zero curvature) is easy
– nonlinear (nonzero curvature) is hard

▶ the classical view is wrong

▶ the correct view:
– convex (nonnegative curvature) is easy
– nonconvex (negative curvature) is hard

CVXPY x NASA Course 2024 18

Solving convex optimization problems

▶ many different algorithms (that run on many platforms)
– interior-point methods for up to 10000s of variables
– first-order methods for larger problems
– do not require initial point, babysitting, or tuning

▶ can develop and deploy quickly using modeling languages such as CVXPY
▶ solvers are reliable, so can be embedded
▶ code generation yields real-time solvers that execute in milliseconds

(e.g., on Falcon 9 and Heavy for landing)

CVXPY x NASA Course 2024 19

Modeling languages for convex optimization

▶ domain specific languages (DSLs) for convex optimization
– describe problem in high level language, close to the math
– can automatically transform problem to standard form, then solve

▶ enables rapid prototyping
▶ it’s now much easier to develop an optimization-based application
▶ ideal for teaching and research (can do a lot with short scripts)

▶ gets close to the basic idea: say what you want, not how to get it

CVXPY x NASA Course 2024 20

CVXPY example: non-negative least squares

math:

minimize ∥Ax − b∥2
2

subject to x ⪰ 0

▶ variable is x
▶ A, b given
▶ x ⪰ 0 means x1 ≥ 0, . . . , xn ≥ 0

CVXPY code:

import cvxpy as cp

A, b = ...

x = cp.Variable(n)

obj = cp.norm2(A @ x - b)**2

constr = [x >= 0]

prob = cp.Problem(cp.Minimize(obj), constr)

prob.solve()

CVXPY x NASA Course 2024 21

A world of optimization modeling languages

▶ express optimization problem in high level syntax
– declare variables
– form constraints and objective
– solve

▶ long history: AMPL, GAMS, . . .
– no special support for convex problems
– very limited syntax
– callable from, but not embedded in other languages

▶ DCP-based modeling: YALMIP, CVX, Convex.jl, CVXPY

CVXPY x NASA Course 2024 22

Course goals

Abstractly, the goal of this course is to enable you to

1. recognize problems that can be formulated as convex optimization problems
2. if necessary, reformulate problems by applying transformations
3. specify problems in CVXPY
4. solve problems fast and reliably

CVXPY x NASA Course 2024 23

Brief history of convex optimization

▶ theory (convex analysis): 1900–1970

▶ algorithms
– 1947: simplex algorithm for linear programming (Dantzig)
– 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
– 1970s: ellipsoid method and other subgradient methods
– 1980s & 90s: interior-point methods (Karmarkar, Nesterov & Nemirovski)
– since 2000s: many methods for large-scale convex optimization

▶ applications
– before 1990: mostly in operations research, a few in engineering
– since 1990: many applications in engineering (control, signal processing, communications,

circuit design, . . .)
– since 2000s: machine learning and statistics, finance

CVXPY x NASA Course 2024 24

Summary

convex optimization problems
▶ are optimization problems of a special form
▶ arise in many applications
▶ can be solved effectively
▶ are easy to specify using DSLs

CVXPY x NASA Course 2024 25

Disciplined Convex Programming

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY x NASA Course 2024 27

Convex optimization problem — standard form

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with variable x ∈ Rn

▶ objective and inequality constraints f0, . . . , fm are convex

for all x, y, 𝜃 ∈ [0, 1],
fi (𝜃x + (1 − 𝜃)y) ≤ 𝜃fi (x) + (1 − 𝜃)fi (y)

i.e., graphs of fi curve upward
▶ equality constraints are linear

CVXPY x NASA Course 2024 28

Convex optimization problem — conic form

cone program:
minimize cTx
subject to Ax = b, x ∈ K

with variable x ∈ Rn

▶ linear objective, equality constraints; K is convex cone
▶ special cases:

– linear program (LP)
– second-order cone program (SOCP)
– semidefinite program (SDP)

▶ the modern canonical form
▶ there are well developed solvers for cone programs

CVXPY x NASA Course 2024 29

How do you solve a convex problem?

▶ use an existing custom solver for your specific problem

▶ develop a new solver for your problem using a currently fashionable method
– requires work
– but (with luck) will scale to large problems

▶ transform your problem into a cone program, and use a standard cone program solver
– can be automated using domain specific languages

CVXPY x NASA Course 2024 30

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY x NASA Course 2024 31

Curvature: Convex, concave, and affine functions

▶ f is concave if −f is convex, i.e., for any x, y, 𝜃 ∈ [0, 1],

f (𝜃x + (1 − 𝜃)y) ≥ 𝜃f (x) + (1 − 𝜃)f (y)

▶ f is affine if it is convex and concave, i.e.,

f (𝜃x + (1 − 𝜃)y) = 𝜃f (x) + (1 − 𝜃)f (y)

for any x, y, 𝜃 ∈ [0, 1]
▶ f is affine ⇐⇒ it has form f (x) = aTx + b

CVXPY x NASA Course 2024 32

Examples of basic convex functions

▶ xp (p ≥ 1 or p ≤ 0), e.g., x2, 1/x (x > 0)
▶ ex

▶ x log x
▶ aTx + b
▶ xTPx (P ⪰ 0)
▶ ∥x∥ (any norm)
▶ max(x1, . . . , xn)

CVXPY x NASA Course 2024 33

Examples of basic concave functions

▶ xp (0 ≤ p ≤ 1), e.g.,
√

x
▶ log x
▶ √xy
▶ xTPx (P ⪯ 0)
▶ min(x1, . . . , xn)

CVXPY x NASA Course 2024 34

Less basic examples

Convex functions
▶ x2/y for y > 0 and xTY−1x for Y ≻ 0.
▶ x log(x/y) for x, y ≥ 0.
▶ 𝜆max (X), for symmetric X.

Concave functions
▶ log det X and (det X)1/n, for X ≻ 0.
▶ logΦ(x), where Φ is the Gaussian CDF.
▶ 𝜆min (X), for symmetric X.

CVXPY x NASA Course 2024 35

How to verify that a function is convex or concave?

▶ via the definition. For convex functions,

f (𝜃x + (1 − 𝜃)y) ≤ 𝜃f (x) + (1 − 𝜃)f (y)

▶ via first or second order conditions. For convex functions,

∇2f (x) ⪰ 0

▶ via convex calculus:
– start w/ library of basic functions that are convex or concave
– apply transformations that preserve convexity

CVXPY x NASA Course 2024 36

Convex calculus: basic rules

▶ nonnegative scaling: f convex, 𝛼 ≥ 0 =⇒ 𝛼f convex

▶ sum: f , g convex =⇒ f + g convex

▶ affine composition: f convex =⇒ f (Ax + b) convex

▶ pointwise maximum: f1, . . . , fm convex =⇒ maxi fi (x) convex

▶ composition: h convex increasing, f convex =⇒ h(f (x)) convex
. . . and similar rules for concave functions

CVXPY x NASA Course 2024 37

Convex calculus: applications

▶ ℓ1-regularized least-squares cost:

∥Ax − b∥2
2 + 𝜆∥x∥1, with 𝜆 ≥ 0

▶ sum of largest k elements of x:
x[1] + · · · + x[k]

▶ log-barrier:
m∑︁

i=1
log(−fi (x)) on {x | fi (x) < 0}, fi convex.

CVXPY x NASA Course 2024 38

One Rule to Rule Them All

h(f1 (x), . . . , fk (x)) is convex when h is convex and for each i
▶ h is increasing in argument i, and fi is convex, or
▶ h is decreasing in argument i, and fi is concave, or
▶ fi is affine

There’s a similar rule for concave compositions
(just swap convex and concave above).

CVXPY x NASA Course 2024 39

Example: The One Rule

let’s show that
f (u, v) = (u + 1) log

(
u + 1

min(u, v)

)
is convex

three steps:
1. x log(x/y) is convex in (x, y), decreasing in y
2. u, v are variables with u, v > 0
3. u + 1 is affine; min(u, v) is concave; both positive

CVXPY x NASA Course 2024 40

Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY x NASA Course 2024 41

Algorithmic convexity verification: idea

▶ start with an Expression, build a parse tree
– leaves: variables, constants, or parameters
– nodes: Atom objects (functions of children)

▶ store curvature + monotonicity info of leaves and nodes
– convex, concave, affine, constant
– increasing, decreasing
– helps to tag signs. E.g. x2 increasing for x ≥ 0

▶ apply The One Rule from the bottom up

CVXPY x NASA Course 2024 42

Algorithmic convexity verification: example

(x − y)2/(1 − max(x, y))

dcp.stanford.edu

CVXPY x NASA Course 2024 43

Exercise: DCP analysis
https://marimo.app/l/3s4nd6

CVXPY x NASA Course 2024 44

https://marimo.app/l/3s4nd6

Solution: DCP analysis
https://marimo.app/l/bi9huq

CVXPY x NASA Course 2024 45

https://marimo.app/l/bi9huq

Exercise: limitations of CVXPY’s DCP parsing

Your task:
▶ find a convex CVXPY Expression expr for which expr.is dcp() == False

recall: h(f1 (x), . . . , fk (x)) is convex when h is convex and for each i
▶ h is increasing in argument i, and fi is convex, or
▶ h is decreasing in argument i, and fi is concave, or
▶ fi is affine

CVXPY x NASA Course 2024 46

Exercise: limitations of CVXPY’s DCP parsing

√
x2 + 1

▶ bad: cp.sqrt(cp.square(x) + 1)
– leaves: 1 is constant, x is affine
– node: x2 is convex
– node: 1 + x2 is convex
– node: √· is concave!

▶ good: cp.norm(cp.hstack([x, 1]), 2)
– x ↦→ [x, 1] is affine
– ∥ · ∥2 is convex

CVXPY x NASA Course 2024 47

Backup slides

Backup slides

CVXPY x NASA Course 2024 48

Exercise: Python intro
https://marimo.app/l/14bxi2

CVXPY x NASA Course 2024 49

https://marimo.app/l/14bxi2

	Introduction
	Course overview
	Mathematical optimization
	Convex optimization

	Disciplined Convex Programming
	Convex Optimization
	Constructive Convex Analysis
	Disciplined Convex Programming (DCP)

