# CVXPY x NASA Course 2024

Philipp Schiele Steven Diamond Parth Nobel Akshay Agrawal

June 10, 2024



Introduction

# Outline

Course overview

Mathematical optimization

Convex optimization

### **Course overview**

- weekly lectures Mondays 11:30–13:30 ET on Teams
- lectures include hands-on exercises for participants

#### topics covered

| June 10 | Introduction to convex optimization and CVXPY    |
|---------|--------------------------------------------------|
| June 17 | Disciplined convex programming                   |
| June 24 | Landing a rocket using model predictive control  |
| July 1  | Sensitivity analysis and robust Kalman filtering |
| July 8  | Regression and generalized linear models         |
| July 15 | Aircraft design using geometric programming      |
| July 22 | Code generation for quadcopter control           |
| July 29 | Object oriented optimization for power systems   |
|         |                                                  |

# **Speakers**



#### **Philipp Schiele**

- Completed PhD defense in statistics at LMU Munich (degree pending conferral)
- Postdoc at Stanford



#### **Steven Diamond**

- PhD in computer science from Stanford
- Research scientist at Gridmatic

# **Speakers**

#### Parth Nobel

- PhD candidate in electrical engineering at Stanford
- redesigned convex optimization course at Stanford

#### **Akshay Agrawal**

- PhD in electrical engineering from Stanford
- working on marimo





### Outline

Course overview

Mathematical optimization

Convex optimization

# **Optimization problem**

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & g_i(x)=0, \quad i=1,\ldots,p \end{array}$ 

- ▶  $x \in \mathbf{R}^n$  is (vector) variable to be chosen (*n* scalar variables  $x_1, \ldots, x_n$ )
- $f_0$  is the **objective function**, to be minimized
- $f_1, \ldots, f_m$  are the inequality constraint functions
- $g_1, \ldots, g_p$  are the equality constraint functions
- variations: maximize objective, multiple objectives, ...

# Finding good (or best) actions

#### x represents some action, e.g.,

- trades in a portfolio
- airplane control surface deflections
- schedule or assignment
- resource allocation
- constraints limit actions or impose conditions on outcome
- the smaller the objective  $f_0(x)$ , the better
  - total cost (or negative profit)
  - deviation from desired or target outcome
  - risk
  - fuel use

# **Finding good models**

- x represents the parameters in a model
- constraints impose requirements on model parameters (e.g., nonnegativity)
- objective  $f_0(x)$  is sum of two terms:
  - a prediction error (or loss) on some observed data
  - a (regularization) term that penalizes model complexity

### Worst-case analysis (pessimization)

- variables are actions or parameters out of our control (and possibly under the control of an adversary)
- constraints limit the possible values of the parameters
- minimizing  $-f_0(x)$  finds worst possible parameter values
- if the worst possible value of  $f_0(x)$  is tolerable, you're OK
- it's good to know what the worst possible scenario can be

# **Optimization-based models**

model an entity as taking actions that solve an optimization problem

- an individual makes choices that maximize expected utility
- an organism acts to maximize its reproductive success
- reaction rates in a cell maximize growth
- currents in a circuit minimize total power
- (except the last) these are very crude models
- and yet, they often work very well

# Basic use model for mathematical optimization

- instead of saying how to choose (action, model)
- you articulate what you want (by stating the problem)
- then let an algorithm decide on (action, model)

# Can you solve it?

generally, no

but you can try to solve it approximately, and it often doesn't matter

#### the exception: convex optimization

- includes linear programming (LP), quadratic programming (QP), many others
- we can solve these problems reliably and efficiently
- come up in many applications across many fields

# **Nonlinear optimization**

traditional techniques for general nonconvex problems involve compromises

#### local optimization methods (nonlinear programming)

- find a point that minimizes  $f_0$  among feasible points near it
- can handle large problems, e.g., neural network training
- require initial guess, and often, algorithm parameter tuning
- provide no information about how suboptimal the point found is

#### global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size
- often based on solving convex subproblems

# Outline

Course overview

Mathematical optimization

Convex optimization

# **Convex optimization**

convex optimization problem:

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

• variable  $x \in \mathbf{R}^n$ 

- equality constraints are linear
- $f_0, \ldots, f_m$  are **convex**: for  $\theta \in [0, 1]$ ,

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

*i.e.*,  $f_i$  have nonnegative (upward) curvature

# When is an optimization problem hard to solve?

#### classical view:

- linear (zero curvature) is easy
- nonlinear (nonzero curvature) is hard

the classical view is wrong

- the correct view:
  - convex (nonnegative curvature) is easy
  - nonconvex (negative curvature) is hard

# Solving convex optimization problems

many different algorithms (that run on many platforms)

- interior-point methods for up to 10000s of variables
- first-order methods for larger problems
- do not require initial point, babysitting, or tuning
- can develop and deploy quickly using modeling languages such as CVXPY
- solvers are reliable, so can be embedded
- code generation yields real-time solvers that execute in milliseconds (e.g., on Falcon 9 and Heavy for landing)

# Modeling languages for convex optimization

domain specific languages (DSLs) for convex optimization

- describe problem in high level language, close to the math
- can automatically transform problem to standard form, then solve

- enables rapid prototyping
- it's now much easier to develop an optimization-based application
- ideal for teaching and research (can do a lot with short scripts)
- gets close to the basic idea: say what you want, not how to get it

# **CVXPY example: non-negative least squares**

#### math:

- $\begin{array}{ll} \text{minimize} & \|Ax b\|_2^2\\ \text{subject to} & x \ge 0 \end{array}$
- variable is x
- ► A, b given

• 
$$x \ge 0$$
 means  $x_1 \ge 0, \ldots, x_n \ge 0$ 

#### CVXPY code:

import cvxpy as cp

A,  $b = \ldots$ 

x = cp.Variable(n) obj = cp.norm2(A @ x - b)\*\*2 constr = [x >= 0] prob = cp.Problem(cp.Minimize(obj), constr) prob.solve()

# A world of optimization modeling languages

express optimization problem in high level syntax

- declare variables
- form constraints and objective
- solve
- Iong history: AMPL, GAMS, ...
  - no special support for convex problems
  - very limited syntax
  - callable from, but not embedded in other languages
- DCP-based modeling: YALMIP, CVX, Convex.jl, CVXPY

### **Course goals**

Abstractly, the goal of this course is to enable you to

- 1. recognize problems that can be formulated as convex optimization problems
- 2. if necessary, reformulate problems by applying transformations
- 3. specify problems in CVXPY
- 4. solve problems fast and reliably

# Brief history of convex optimization

theory (convex analysis): 1900–1970

#### algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: interior-point methods (Karmarkar, Nesterov & Nemirovski)
- since 2000s: many methods for large-scale convex optimization

#### applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, ...)
- since 2000s: machine learning and statistics, finance

# Summary

convex optimization problems

- are optimization problems of a special form
- arise in many applications
- can be solved effectively
- are easy to specify using DSLs

**Disciplined Convex Programming** 

### Outline

**Convex Optimization** 

**Constructive Convex Analysis** 

Disciplined Convex Programming (DCP)

# Convex optimization problem — standard form

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

with variable  $x \in \mathbf{R}^n$ 

• objective and inequality constraints  $f_0, \ldots, f_m$  are convex

```
for all x, y, \theta \in [0, 1],
```

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

*i.e.*, graphs of  $f_i$  curve upward

equality constraints are linear

# Convex optimization problem — conic form

cone program:

minimize  $c^T x$ subject to Ax = b,  $x \in \mathcal{K}$ 

with variable  $x \in \mathbf{R}^n$ 

- ► linear objective, equality constraints; K is convex cone
- special cases:
  - linear program (LP)
  - second-order cone program (SOCP)
  - semidefinite program (SDP)
- the modern canonical form
- there are well developed solvers for cone programs

# How do you solve a convex problem?

use an existing custom solver for your specific problem

develop a new solver for your problem using a currently fashionable method

- requires work
- but (with luck) will scale to large problems

transform your problem into a cone program, and use a standard cone program solver

- can be automated using domain specific languages

### Outline

**Convex Optimization** 

**Constructive Convex Analysis** 

Disciplined Convex Programming (DCP)

### Curvature: Convex, concave, and affine functions



► *f* is *concave* if -f is convex, *i.e.*, for any  $x, y, \theta \in [0, 1]$ ,

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$$

▶ *f* is *affine* if it is convex and concave, *i.e.*,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

for any  $x, y, \theta \in [0, 1]$ 

• *f* is affine 
$$\iff$$
 it has form  $f(x) = a^T x + b$ 

# **Examples of basic convex functions**

• 
$$x^p \ (p \ge 1 \text{ or } p \le 0), \ e.g., \ x^2, \ 1/x \ (x > 0)$$

- $\triangleright e^x$
- $\blacktriangleright x \log x$
- $\blacktriangleright a^T x + b$
- ►  $x^T P x$  ( $P \ge 0$ )
- ▶ ||x|| (any norm)
- $\blacktriangleright \max(x_1,\ldots,x_n)$

# **Examples of basic concave functions**

► 
$$x^p (0 \le p \le 1), e.g., \sqrt{x}$$

- $\triangleright \log x$
- $\blacktriangleright \sqrt{xy}$
- ►  $x^T P x (P \le 0)$
- $\blacktriangleright \min(x_1,\ldots,x_n)$

# Less basic examples

Convex functions

- $x^2/y$  for y > 0 and  $x^T Y^{-1}x$  for Y > 0.
- $x \log(x/y)$  for  $x, y \ge 0$ .
- $\lambda_{\max}(X)$ , for symmetric *X*.

Concave functions

- log det X and  $(\det X)^{1/n}$ , for X > 0.
- $\log \Phi(x)$ , where  $\Phi$  is the Gaussian CDF.
- $\lambda_{\min}(X)$ , for symmetric *X*.

# How to verify that a function is convex or concave?

via the definition. For convex functions,

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ 

via first or second order conditions. For convex functions,

 $\nabla^2 f(x) \ge 0$ 

- via convex calculus:
  - start w/ library of basic functions that are convex or concave
  - apply transformations that preserve convexity

### Convex calculus: basic rules

- **•** nonnegative scaling: f convex,  $\alpha \ge 0 \implies \alpha f$  convex
- **sum**: f, g convex  $\implies f + g$  convex
- affine composition: f convex  $\implies$  f(Ax + b) convex
- **•** pointwise maximum:  $f_1, \ldots, f_m$  convex  $\implies \max_i f_i(x)$  convex
- **composition**: *h* convex increasing, *f* convex  $\implies$  *h*(*f*(*x*)) convex
- ... and similar rules for concave functions

### **Convex calculus: applications**

•  $\ell_1$ -regularized least-squares cost:

$$||Ax - b||_2^2 + \lambda ||x||_1, \text{ with } \lambda \ge 0$$

sum of largest *k* elements of *x*:

 $x_{[1]} + \cdots + x_{[k]}$ 

log-barrier:

$$\sum_{i=1}^{m} \log(-f_i(x)) \quad \text{on} \quad \{x \mid f_i(x) < 0\}, f_i \text{ convex}$$

# One Rule to Rule Them All

 $h(f_1(x), \ldots, f_k(x))$  is convex when h is convex and for each i

- *h* is increasing in argument *i*, and  $f_i$  is convex, or
- *h* is decreasing in argument *i*, and  $f_i$  is concave, or
- $f_i$  is affine

There's a similar rule for concave compositions (just swap convex and concave above).

# **Example: The One Rule**

let's show that

$$f(u, v) = (u+1)\log\left(\frac{u+1}{\min(u, v)}\right)$$

is convex

three steps:

- 1.  $x \log(x/y)$  is convex in (x, y), decreasing in y
- 2. u, v are variables with u, v > 0
- 3. u + 1 is affine; min(u, v) is concave; both positive

### Outline

**Convex Optimization** 

**Constructive Convex Analysis** 

Disciplined Convex Programming (DCP)

# Algorithmic convexity verification: idea

start with an Expression, build a parse tree

- leaves: variables, constants, or parameters
- nodes: **Atom** objects (functions of children)

store curvature + monotonicity info of leaves and nodes

- convex, concave, affine, constant
- increasing, decreasing
- helps to tag *signs*. E.g.  $x^2$  increasing for  $x \ge 0$
- apply The One Rule from the bottom up

# Algorithmic convexity verification: example

$$(x - y)^2 / (1 - \max(x, y))$$



Exercise: DCP analysis https://marimo.app/1/3s4nd6 Solution: DCP analysis https://marimo.app/1/bi9huq

# Exercise: limitations of CVXPY's DCP parsing

#### Your task:

find a convex CVXPY Expression expr for which expr.is\_dcp() == False

recall:  $h(f_1(x), \ldots, f_k(x))$  is convex when *h* is convex and for each *i* 

- *h* is increasing in argument *i*, and  $f_i$  is convex, or
- *h* is decreasing in argument *i*, and  $f_i$  is concave, or
- $f_i$  is affine

# Exercise: limitations of CVXPY's DCP parsing

# $\sqrt{x^2+1}$

- bad: cp.sqrt(cp.square(x) + 1)
  - leaves: 1 is constant, x is affine
  - node:  $x^2$  is convex
  - node:  $1 + x^2$  is convex
  - node:  $\sqrt{\cdot}$  is concave!
- good: cp.norm(cp.hstack([x, 1]), 2)
  - $x \mapsto [x, 1]$  is affine
  - $\| \cdot \|_2$  is convex

### **Backup slides**

# Backup slides

Exercise: Python intro https://marimo.app/l/14bxi2