Coverage for src / cvx / risk / linalg / valid.py: 100%
7 statements
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-15 12:21 +0000
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-15 12:21 +0000
1"""Matrix validation utilities for handling non-finite values.
3This module provides functions for validating and cleaning matrices that may
4contain non-finite values (NaN or infinity). This is particularly useful when
5working with financial data where missing values are common.
7Example:
8 Extract the valid submatrix from a covariance matrix with missing data:
10 >>> import numpy as np
11 >>> from cvx.risk.linalg import valid
12 >>> # Create a covariance matrix with some NaN values on diagonal
13 >>> cov = np.array([[np.nan, 0.5, 0.2],
14 ... [0.5, 2.0, 0.3],
15 ... [0.2, 0.3, np.nan]])
16 >>> # Get valid indicator and submatrix
17 >>> v, submatrix = valid(cov)
18 >>> v # Second row/column is valid
19 array([False, True, False])
20 >>> submatrix
21 array([[2.]])
23"""
25# Copyright 2023 Stanford University Convex Optimization Group
26#
27# Licensed under the Apache License, Version 2.0 (the "License");
28# you may not use this file except in compliance with the License.
29# You may obtain a copy of the License at
30#
31# http://www.apache.org/licenses/LICENSE-2.0
32#
33# Unless required by applicable law or agreed to in writing, software
34# distributed under the License is distributed on an "AS IS" BASIS,
35# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36# See the License for the specific language governing permissions and
37# limitations under the License.
38from __future__ import annotations
40import numpy as np
43def valid(matrix: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
44 """Extract the valid subset of a matrix by removing rows/columns with non-finite values.
46 This function identifies rows and columns in a square matrix that contain
47 non-finite values (NaN or infinity) on the diagonal and removes them,
48 returning both the indicator vector and the resulting valid submatrix.
50 This is useful when working with covariance matrices where some assets
51 may have missing or invalid data.
53 Args:
54 matrix: A square n x n matrix to be validated. Typically a covariance
55 or correlation matrix.
57 Returns:
58 A tuple containing:
59 - v: Boolean vector of shape (n,) indicating which rows/columns are
60 valid (True for valid, False for invalid).
61 - submatrix: The valid submatrix with invalid rows/columns removed.
62 Shape is (k, k) where k is the number of True values in v.
64 Raises:
65 AssertionError: If the input matrix is not square (n x n).
67 Example:
68 Basic usage with a covariance matrix:
70 >>> import numpy as np
71 >>> from cvx.risk.linalg import valid
72 >>> # Create a 3x3 matrix with one invalid entry
73 >>> cov = np.array([[1.0, 0.5, 0.2],
74 ... [0.5, np.nan, 0.3],
75 ... [0.2, 0.3, 1.0]])
76 >>> v, submatrix = valid(cov)
77 >>> v
78 array([ True, False, True])
79 >>> submatrix
80 array([[1. , 0.2],
81 [0.2, 1. ]])
83 Handling a fully valid matrix:
85 >>> cov = np.array([[1.0, 0.5], [0.5, 1.0]])
86 >>> v, submatrix = valid(cov)
87 >>> v
88 array([ True, True])
89 >>> np.allclose(submatrix, cov)
90 True
92 Note:
93 The function checks only the diagonal elements for validity. It assumes
94 that if the diagonal is finite, the entire row/column is valid. This is
95 a common assumption for covariance matrices.
97 """
98 # make sure matrix is quadratic
99 if matrix.shape[0] != matrix.shape[1]:
100 raise AssertionError
102 v = np.isfinite(np.diag(matrix))
103 return v, matrix[:, v][v]