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Convex optimization problem — standard form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with variable x ∈ Rn

I objective and inequality constraints f0, . . . , fm are convex
for all x , y , θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., graphs of fi curve upward
I equality constraints are linear
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Convex optimization problem — conic form

cone program:

minimize cT x
subject to Ax = b, x ∈ K

with variable x ∈ Rn

I linear objective, equality constraints; K is convex cone
I special cases:

I linear program (LP)
I semidefinite program (SDP)

I the modern canonical form
I there are well developed solvers for cone programs
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How do you solve a convex problem?

I use an existing custom solver for your specific problem

I develop a new solver for your problem using a currently
fashionable method
I requires work
I but (with luck) will scale to large problems

I transform your problem into a cone program, and use a
standard cone program solver
I can be automated using domain specific languages
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Curvature: Convex, concave, and affine functions

I f is concave if −f is convex, i.e., for any x , y , θ ∈ [0, 1],

f (θx + (1− θ)y) ≥ θf (x) + (1− θ)f (y)

I f is affine if it is convex and concave, i.e.,

f (θx + (1− θ)y) = θf (x) + (1− θ)f (y)

for any x , y , θ ∈ [0, 1]
I f is affine ⇐⇒ it has form f (x) = aT x + b
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Examples of basic convex functions

I xp (p ≥ 1 or p ≤ 0), e.g., x2, 1/x (x > 0)
I ex

I x log x
I aT x + b
I xT Px (P � 0)
I ‖x‖ (any norm)
I max(x1, . . . , xn)
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Examples of basic concave functions

I xp (0 ≤ p ≤ 1), e.g.,
√

x
I log x
I √xy
I xT Px (P � 0)
I min(x1, . . . , xn)
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Less basic examples

Convex functions

I x2/y for y > 0 and xT Y −1x for Y � 0.
I x log(x/y) for x , y ≥ 0.
I λmax(X ), for symmetric X .

Concave functions

I log det X and (det X )1/n, for X � 0.
I log Φ(x), where Φ is the Gaussian CDF.
I λmin(X ), for symmetric X .
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How to verify that a function is convex or concave?

I Via the definition. For convex functions,

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y).

I Via first or second order conditions. For convex functions,

∇2f (x) � 0.

I Via convex calculus:
I start w/ library of basic functions that are convex or concave
I apply transformations that preserve convexity
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Convex calculus: basic rules

I nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex

I sum: f , g convex =⇒ f + g convex

I affine composition: f convex =⇒ f (Ax + b) convex

I pointwise maximum: f1, . . . , fm convex =⇒ maxi fi (x) convex

I composition: h convex increasing, f convex =⇒ h(f (x)) convex

. . . and similar rules for concave functions
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Convex calculus: applications

I `1-regularized least-squares cost:

‖Ax − b‖2
2 + λ‖x‖1, with λ ≥ 0

I sum of largest k elements of x :

x[1] + · · ·+ x[k]

I log-barrier:
m∑

i=1
log(−fi (x)) on {x | fi (x) < 0}, fi convex.
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One Rule to Rule Them All

h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

I h is increasing in argument i , and fi is convex, or
I h is decreasing in argument i , and fi is concave, or
I fi is affine

There’s a similar rule for concave compositions
(just swap convex and concave above).
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Example: The One Rule

Let’s show that

f (u, v) = (u + 1) log
( u + 1

min(u, v)

)
is convex.

Three steps:

1. x log(x/y) is convex in (x , y), decreasing in y .
2. u, v are variables with u, v > 0.
3. u + 1 is affine; min(u, v) is concave; both positive.
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Algorithmic convexity verification: idea

I Start with an Expression, build a parse tree
I Leaves: variables, constants, or parameters
I Nodes: Atom objects (functions of children)

I Store curvature + monotonicity info of leaves and nodes.
I convex, concave, affine, constant
I increasing, decreasing
I Helps to tag signs. E.g. x2 increasing for x ≥ 0.

I Apply The One Rule from the bottom up.
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Algorithmic convexity verification: example

(x − y)2/(1−max(x , y))

dcp.stanford.edu
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A disciplined convex program (DCP)

I zero or one objective, with form
I minimize {scalar convex expression} or
I maximize {scalar concave expression}

I zero or more constraints, with form
I {convex expression} <= {concave expression} or
I {concave expression} >= {convex expression} or
I {affine expression} == {affine expression}

I Convexity inferred by The One Rule and base atoms.
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CVXPY

x = cp.Variable(n)
loss = cp.sum_squares(A @ x - b) + gamma*cp.norm(x,1)
prob = cp.Problem(cp.Minimize(loss),

[cp.norm(x,"inf") <= 1])
opt_val = prob.solve()
solution = x.value

I A, b, gamma are constants (gamma nonnegative)
I variables, expressions, constraints exist outside of problem
I solve method canonicalizes, solves, assigns value

attributes

Disciplined Convex Programming (DCP) 21



Exercise: limitations of CVXPY’s DCP parsing

Your task:

I Find a convex CVXPY Expression expr for which
expr.is dcp() == False.

Recall: h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

I h is increasing in argument i , and fi is convex, or
I h is decreasing in argument i , and fi is concave, or
I fi is affine
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Exercise: limitations of CVXPY’s DCP parsing

√
x2 + 1

I Bad: cp.sqrt(cp.square(x) + 1)
I Leaves: 1 is constant, x is affine
I Node: x2 is convex
I Node: 1 + x2 is convex
I Node:

√
· is concave!

I Good: cp.norm(cp.hstack([x, 1]), 2).
I x 7→ [x , 1] is affine.
I ‖ · ‖2 is convex.
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A world of optimization modeling languages

I express optimization problem in high level syntax
I declare variables
I form constraints and objective
I solve

I long history: AMPL, GAMS, . . .
I no special support for convex problems
I very limited syntax
I callable from, but not embedded in other languages

I DCP-based modeling: YALMIP, CVX, Convex.jl, CVXPY.
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Using CVXPY Parameter objects

I symbolic representations of constants
I can specify sign
I change value of constant without re-parsing problem

I E.g., tuning the regularization parameter in Lasso:
x_values = []
for val in numpy.logspace(-4, 2, 100):

gamma.value = val
prob.solve()
x_values.append(x.value)
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Using CVXPY with Dask

def get_x(gamma_value):
# return optimal x for this gamma
return None

gammas = np.logspace(-4, 2, 30)
xs_lazy = [dask.delayed(get_x)(g) for g in gammas]
xs = dask.compute(*xs_lazy, scheduler='processes')

Exercise. Ridge vs. LASSO
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Exercise: implement a poor man’s sum-k-largest

Sum of largest k components = largest sum of k components.

Approach:

I Use itertools.combinations
I Index into expr with a list of indices.
I Use cp.sum(expr) and cp.maxmimum(*expr list)

Compare correctness to “cp.sum largest“.
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Convex sets

Definition: D ⊂ Rn is convex if

x , y ∈ D, θ ∈ [0, 1]⇒ θx + (1− θ)y ∈ D.

Fact: a function f is convex on D if and only if

{(x , t) ∈ D × R : f (x) ≤ t} is convex.
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The DCP composition rule, revisited

Suppose h(x , y , z) is decreasing in y and increasing in z .
Consider vector-valued functions G ,F where

I each component of G is concave, and
I each component of F is convex.

If h is convex, then so is h (x ,G(x),F (x)). Proof:

{(x , t) : h (x ,G(x),F (x)) ≤ t}
= {(x , t) : h(x , y , z) ≤ t, y ≤ G(x), F (x) ≤ z}.

Moral: canonicalization adds variables and constraints!
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Support functions

The support function of a convex set D is

σD(x) = max{xT a : a ∈ D}.

Toy example.

The problem
min{‖x − b‖2 : if ‖a‖p ≤ 3 then aT x ≤ 1}

is equivalent to
min{‖x − b‖2 : σD(x) ≤ 1}
D = {a : ‖a‖p ≤ 3}.

Extra slides 33



References

I Disciplined Convex Programming (Grant, Boyd, Ye)
I Graph Implementations for Nonsmooth Convex Programs

(Grant, Boyd)
I Matrix-Free Convex Optimization Modeling

(Diamond, Boyd)

I CVX: http://cvxr.com/
I CVXPY: http://www.cvxpy.org/
I Convex.jl: http://convexjl.readthedocs.org/

Extra slides 34

http://cvxr.com/
http://www.cvxpy.org/
http://convexjl.readthedocs.org/

	Convex Optimization
	Constructive Convex Analysis
	Disciplined Convex Programming (DCP)
	CVXPY Tips and Tricks
	Advanced Material
	Extra slides

