Disciplined Convex Programming

Steven Diamond Riley Murray Philipp Schiele

SciPy 2022, July 12

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY Tips and Tricks

Advanced Material

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY Tips and Tricks

Advanced Material

Extra slides

Convex Optimization

Convex optimization problem — standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

with variable $x \in \mathbf{R}^n$

▶ objective and inequality constraints f₀,..., f_m are convex for all x, y, θ ∈ [0, 1],

$$f_i(heta x + (1- heta)y) \leq heta f_i(x) + (1- heta)f_i(y)$$

i.e., graphs of f_i curve upward
equality constraints are linear

Convex Optimization

Convex optimization problem — conic form

cone program:

minimize
$$c^T x$$

subject to $Ax = b$, $x \in \mathcal{K}$

with variable $x \in \mathbf{R}^n$

- ▶ linear objective, equality constraints; *K* is convex cone
- special cases:
 - linear program (LP)
 - semidefinite program (SDP)
- the modern canonical form
- there are well developed solvers for cone programs

Convex Optimization

How do you solve a convex problem?

use an existing custom solver for your specific problem

- develop a new solver for your problem using a currently fashionable method
 - requires work
 - but (with luck) will scale to large problems
- transform your problem into a cone program, and use a standard cone program solver
 - can be automated using domain specific languages

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY Tips and Tricks

Advanced Material

Extra slides

Constructive Convex Analysis

Curvature: Convex, concave, and affine functions

▶ *f* is concave if -f is convex, *i.e.*, for any *x*, *y*, $\theta \in [0, 1]$,

$$f(heta x + (1 - heta)y) \geq heta f(x) + (1 - heta)f(y)$$

f is affine if it is convex and concave, i.e.,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

for any $x, y, \theta \in [0, 1]$ \blacktriangleright f is affine \iff it has form $f(x) = a^T x + b$

Constructive Convex Analysis

Examples of basic convex functions

▶
$$x^{p}$$
 ($p \ge 1$ or $p \le 0$), e.g., x^{2} , $1/x$ ($x > 0$)
▶ e^{x}

- x log x
- $\blacktriangleright a^T x + b$
- $\blacktriangleright x^T P x \ (P \succeq 0)$
- ▶ ||x|| (any norm)
- $\max(x_1,\ldots,x_n)$

Examples of basic concave functions

Less basic examples

Convex functions

Concave functions

- log det X and $(\det X)^{1/n}$, for $X \succ 0$.
- $\log \Phi(x)$, where Φ is the Gaussian CDF.
- $\lambda_{\min}(X)$, for symmetric X.

Constructive Convex Analysis

How to verify that a function is convex or concave?

Via the definition. For convex functions,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

▶ Via first or second order conditions. For convex functions,

$$\nabla^2 f(x) \succeq 0.$$

- start w/ library of basic functions that are convex or concave
- apply transformations that preserve convexity

Constructive Convex Analysis

Convex calculus: basic rules

- **•** nonnegative scaling: f convex, $\alpha \ge 0 \implies \alpha f$ convex
- **•** sum: f, g convex $\implies f + g$ convex
- affine composition: f convex $\implies f(Ax + b)$ convex
- **• pointwise maximum**: f_1, \ldots, f_m convex $\implies \max_i f_i(x)$ convex
- **composition**: *h* convex increasing, *f* convex $\implies h(f(x))$ convex

... and similar rules for concave functions

Convex calculus: applications

*l*₁-regularized least-squares cost:

$$\|Ax - b\|_2^2 + \lambda \|x\|_1$$
, with $\lambda \ge 0$

sum of largest k elements of x:

$$x_{[1]} + \cdots + x_{[k]}$$

► log-barrier:

$$\sum_{i=1}^m \log(-f_i(x))$$
 on $\{x \mid f_i(x) < 0\}, f_i$ convex.

Constructive Convex Analysis

One Rule to Rule Them All

 $h(f_1(x), \ldots, f_k(x))$ is convex when h is convex and for each i

- h is increasing in argument i, and f_i is convex, or
- h is decreasing in argument i, and f_i is concave, or
- *f_i* is affine

There's a similar rule for concave compositions (just swap convex and concave above).

Example: The One Rule

Let's show that

$$f(u,v) = (u+1)\log\left(\frac{u+1}{\min(u,v)}\right)$$

is convex.

Three steps:

- 1. $x \log(x/y)$ is convex in (x, y), decreasing in y.
- 2. u, v are variables with u, v > 0.
- 3. u + 1 is affine; min(u, v) is concave; both positive.

Constructive Convex Analysis

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY Tips and Tricks

Advanced Material

Extra slides

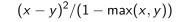
Disciplined Convex Programming (DCP)

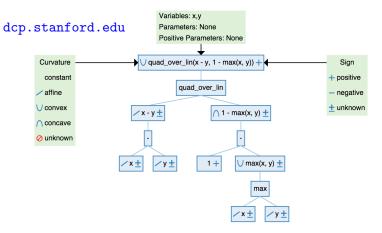
Algorithmic convexity verification: idea

Start with an Expression, build a parse tree Leaves: variables, constants, or parameters Nodes: Atom objects (functions of children) Store curvature + monotonicity info of leaves and nodes. convex, concave, affine, constant increasing, decreasing • Helps to tag signs. E.g. x^2 increasing for x > 0.

- Apply The One Rule from the bottom up.

Algorithmic convexity verification: example





Disciplined Convex Programming (DCP)

A disciplined convex program (DCP)

zero or one objective, with form

 minimize {scalar convex expression} or
 maximize {scalar concave expression}

 zero or more constraints, with form

 {convex expression} <= {concave expression} or

- {concave expression} >= {convex expression} or
- {affine expression} == {affine expression}
- Convexity inferred by The One Rule and base **atoms**.

CVXPY

- A, b, gamma are constants (gamma nonnegative)
- variables, expressions, constraints exist outside of problem
- solve method canonicalizes, solves, assigns value attributes

Exercise: limitations of CVXPY's DCP parsing

Your task:

Find a convex CVXPY Expression expr for which expr.is_dcp() == False.

Recall: $h(f_1(x), \ldots, f_k(x))$ is convex when h is convex and for each i

- *h* is increasing in argument *i*, and f_i is convex, or
- *h* is decreasing in argument *i*, and f_i is concave, or
- f_i is affine

Disciplined Convex Programming (DCP)

Exercise: limitations of CVXPY's DCP parsing

$$\sqrt{x^2+1}$$

- Bad: cp.sqrt(cp.square(x) + 1)
 - Leaves: 1 is constant, x is affine
 - ▶ Node: *x*² is convex
 - Node: $1 + x^2$ is convex
 - Node: $\sqrt{\cdot}$ is concave!
- Good: cp.norm(cp.hstack([x, 1]), 2).
 x ↦ [x, 1] is affine.
 || ⋅ ||₂ is convex.

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY Tips and Tricks

Advanced Material

Extra slides

CVXPY Tips and Tricks

A world of optimization modeling languages

express optimization problem in high level syntax

- declare variables
- form constraints and objective
- solve

Iong history: AMPL, GAMS,

- no special support for convex problems
- very limited syntax
- callable from, <u>but not embedded in</u> other languages
- DCP-based modeling: YALMIP, CVX, Convex.jl, CVXPY.

Using CVXPY Parameter objects

symbolic representations of constants

- can specify sign
- change value of constant without re-parsing problem

```
E.g., tuning the regularization parameter in Lasso:
x_values = []
for val in numpy.logspace(-4, 2, 100):
    gamma.value = val
    prob.solve()
    x_values.append(x.value)
```

CVXPY Tips and Tricks

Using CVXPY with Dask

```
def get_x(gamma_value):
    # return optimal x for this gamma
    return None
```

```
gammas = np.logspace(-4, 2, 30)
xs_lazy = [dask.delayed(get_x)(g) for g in gammas]
xs = dask.compute(*xs_lazy, scheduler='processes')
```

Exercise. Ridge vs. LASSO

CVXPY Tips and Tricks

Exercise: implement a poor man's sum-k-largest

Sum of largest k components = largest sum of k components.

Approach:

- Use itertools.combinations
- Index into expr with a <u>list</u> of indices.
- Use cp.sum(expr) and cp.maxmimum(*expr_list)

Compare correctness to "cp.sum_largest".

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY Tips and Tricks

Advanced Material

Extra slides

Advanced Material

Convex sets

Definition: $D \subset \mathbb{R}^n$ is *convex* if

$$x, y \in D, \ \theta \in [0, 1] \Rightarrow \theta x + (1 - \theta)y \in D.$$

Fact: a function f is convex on D if and only if

 $\{(x,t) \in D \times \mathbb{R} : f(x) \leq t\}$ is convex.

Advanced Material

The DCP composition rule, revisited

Suppose h(x, y, z) is decreasing in y and increasing in z. Consider vector-valued functions G, F where

- each component of G is concave, and
- each component of F is convex.

If h is convex, then so is h(x, G(x), F(x)). Proof:

$$\{(x, t) : h(x, G(x), F(x)) \le t\} \\ = \{(x, t) : h(x, y, z) \le t, y \le G(x), F(x) \le z\}.$$

Moral: canonicalization adds variables and constraints!

Advanced Material

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming (DCP)

CVXPY Tips and Tricks

Advanced Material

Extra slides

Support functions

The support function of a convex set D is

$$\sigma_D(x) = \max\{x^T a : a \in D\}.$$

Toy example.

The problem

 $\min\{\|x-b\|_2 \ : \ \text{if} \ \|a\|_p \leq 3 \ \ \text{then} \ \ a^Tx \leq 1\}$ is equivalent to

$$\min\{\|x - b\|_2 : \sigma_D(x) \le 1\}$$
$$D = \{a : \|a\|_p \le 3\}.$$

References

- Disciplined Convex Programming (Grant, Boyd, Ye)
- Graph Implementations for Nonsmooth Convex Programs (Grant, Boyd)
- Matrix-Free Convex Optimization Modeling (Diamond, Boyd)
- CVX: http://cvxr.com/
- CVXPY: http://www.cvxpy.org/
- Convex.jl: http://convexjl.readthedocs.org/