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Optimization problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

gi (x) = 0, i = 1, . . . , p

I x ∈ Rn is (vector) variable to be chosen

I f0 is the objective function, to be minimized

I f1, . . . , fm are the inequality constraint functions

I g1, . . . , gp are the equality constraint functions

I variations: maximize objective, multiple objectives, . . .
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Finding good (or best) actions

I x represents some action, e.g.,
I trades in a portfolio
I airplane control surface deflections
I schedule or assignment
I resource allocation
I transmitted signal

I constraints limit actions or impose conditions on outcome
I the smaller the objective f0(x), the better

I total cost (or negative profit)
I deviation from desired or target outcome
I fuel use
I risk
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Engineering design

I x represents a design (of a circuit, device, structure, . . . )
I constraints come from

I manufacturing process
I performance requirements

I objective f0(x) is combination of cost, weight, power, . . .
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Finding good models

I x represents the parameters in a model

I constraints impose requirements on model parameters
(e.g., nonnegativity)

I objective f0(x) is the prediction error on some observed data
(and possibly a term that penalizes model complexity)
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Inversion

I x is something we want to estimate/reconstruct, given
some measurement y

I constraints come from prior knowledge about x

I objective f0(x) measures deviation between predicted and
actual measurements
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Worst-case analysis (pessimization)

I variables are actions or parameters out of our control
(and possibly under the control of an adversary)

I constraints limit the possible values of the parameters

I minimizing −f0(x) finds worst possible parameter values

I if the worst possible value of f0(x) is tolerable, you’re OK

I it’s good to know what the worst possible scenario can be
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Optimization-based models

I model an entity as taking actions that solve an optimization
problem
I an individual makes choices that maximize expected utility
I an organism acts to maximize its reproductive success
I reaction rates in a cell maximize growth
I currents in an electric circuit minimize total power

I (except the last) these are very crude models

I and yet, they often work very well
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Summary

I summary: optimization arises everywhere

I the bad news: most optimization problems are intractable
i.e., we cannot solve them

I an exception: convex optimization problems are tractable
i.e., we (generally) can solve them
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Convex optimization problem

convex optimization problem:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

I variable x ∈ Rn

I equality constraints are linear

I f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature
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Why

I beautiful, nearly complete theory
I duality, optimality conditions, . . .

I effective algorithms, methods (in theory and practice)
I get global solution (and optimality certificate)
I polynomial complexity

I conceptual unification of many methods

I lots of applications (many more than previously thought)
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Application areas

I machine learning, statistics

I finance

I supply chain, revenue management, advertising

I control

I signal and image processing, vision

I networking

I circuit design

I combinatorial optimization

I quantum mechanics

I flux-based analysis
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The approach

I try to formulate your optimization problem as convex
I if you succeed, you can (usually) solve it (numerically)

I using generic software if your problem is not really big
I by developing your own software otherwise

I some tricks:
I change of variables
I approximation of true objective, constraints
I relaxation: ignore terms or constraints you can’t handle
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Medium-scale solvers

I 1k – 100k variables, constraints

I reliably solved by interior-point methods on single machine
(especially for problems in standard cone form)

I exploit problem sparsity

I very solid technology

I used in control, finance, engineering design, . . .
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Large-scale solvers

I 1M – 1B variables, constraints
I solved using custom (often problem specific) methods

I limited memory BFGS
I stochastic subgradient
I block coordinate descent
I operator splitting methods

I require custom implementation, tuning for each problem

I used in machine learning, image processing, . . .
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Modeling languages

I high level language support for convex optimization
I describe problem in high level language
I description automatically transformed to a standard form
I solved by standard solver, transformed back to original form

I implementations:
I YALMIP, CVX (Matlab)
I CVXPY (Python)
I Convex.jl (Julia)
I CVXR (R)
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CVXPY

a modeling language in Python for convex optimization

I developed since 2014

I uses signed DCP to verify convexity

I open source all the way to the solvers

I supports parameters

I mixes easily with general Python code, other libraries

I used in many research projects, classes, companies

I tens of thousands of users
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CVXPY

import cvxpy as cp

x = cp.Variable(n)

cost = cp.sum_squares(A@x-b) + gamma*cp.norm(x,1)

prob = cp.Problem(cp.Minimize(cost),

[cp.norm(x,"inf") <= 1])

opt_val = prob.solve()

solution = x.value

I A, b, gamma are constants (gamma nonnegative)

I solve method converts problem to standard form, solves,
assigns value attributes
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Modeling languages

I make convex optimization accessible to non-experts

I easy to experiment with different formulations

I enable more complex models

I slower than custom methods, but often not much

I ongoing work to extend to very large problems
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Radiation treatment planning

I radiation beams with intensities xj ≥ 0 directed at patient

I radiation dose yi received in voxel i

I y = Ax

I A ∈ Rm×n comes from beam geometry, physics
I goal is to choose x to deliver prescribed radiation dose di

I di = 0 for non-tumor voxels
I di > 0 for tumor voxels

I y = d not possible, so we’ll need to compromise

I typical problem has n = 103 beams, m = 106 voxels
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Radiation treatment planning via convex optimization

minimize
∑

i fi (yi )
subject to x ≥ 0, y = Ax

I variables x ∈ Rn, y ∈ Rm

I objective terms are

fi (yi ) = wover
i (yi − di )+ + wunder

i (di − yi )+

I wover
i and wunder

i are positive weights

I i.e., we charge linearly for over- and under-dosing

I a convex problem
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Example

I real patient case with n = 360 beams, m = 360000 voxels
I optimization-based plan essentially the same as plan used

I but we computed the plan in a few seconds on a GPU
I original plan took hours of least-squares weight tweaking
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Hyperloop system design

I hyperloop is a concept for high-speed mass transportation

I pods travel through a low-pressure environment

I a clean-sheet system design problem

I coupled/recursive design relationships

I solved with convex optimization at Virgin Hyperloop
(Kirschen and Burnell, 2021)
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Design relationships
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Parameter sweep
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Control

minimize
∑T−1

t=0 `(xt , ut) + `T (xT )
subject to xt+1 = Axt + But

(xt , ut) ∈ C, xT ∈ CT

I variables are
I system states x1, . . . , xT ∈ Rn

I inputs or actions u0, . . . , uT−1 ∈ Rm

I ` is stage cost, `T is terminal cost

I C is state/action constraints; CT is terminal constraint

I convex problem when costs, constraints are convex

I applications in many fields
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Example

I n = 8 states, m = 2 inputs, horizon T = 50

I randomly chosen A, B (with A ≈ I )

I input constraint ‖ut‖∞ ≤ 1

I terminal constraint xT = 0 (‘regulator’)

I `(x , u) = ‖x‖22 + ‖u‖22 (traditional)

I random initial state x0
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Example
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Support vector machine classifier with `1-regularization

I given data (xi , yi ), i = 1, . . . ,m
I xi ∈ Rn are feature vectors
I y ∈ {±1} are associated boolean outcomes

I linear classifier ŷ = sign(βT x − v)

I find parameters β, v by minimizing (convex function)

(1/m)
∑
i

(
1− yi (β

T xi − v)
)
+

+ λ‖β‖1

I first term is average hinge loss
I second term shrinks coefficients in β and encourages sparsity
I λ ≥ 0 is (regularization) parameter

I simultaneously selects features and fits classifier
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Example

I n = 20 features
I trained and tested on m = 1000 examples each
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Example

βi vs. λ (regularization path)
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Summary

I convex optimization problems arise in many applications

I convex optimization problems can be solved effectively
I using generic methods for not huge problems
I by developing custom methods for huge problems

I high level language support
(CVX/CVXPY/Convex.jl/CVXR) makes prototyping easy
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Resources

many researchers have worked on the topics covered

I Convex Optimization (book)

I EE364a (course slides, videos, code, homework, . . . )

I software CVX, CVXPY, Convex.jl, CVXR

all available online
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https://web.stanford.edu/~boyd/cvxbook/
http://web.stanford.edu/class/ee364a/
http://cvxr.com/
https://cvxpy.org
https://convexjl.readthedocs.io/en/latest/
https://cvxr.rbind.io/
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