Convex Optimization Applications

Steven Diamond Riley Murray Philipp Schiele

SciPy 2022, July 12

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Portfolio allocation vector

- invest fraction w_i in asset i, i = 1, ..., n
- $w \in \mathbf{R}^n$ is portfolio allocation vector
- ▶ $1^T w = 1$
- w_i < 0 means a short position in asset i (borrow shares and sell now; must replace later)

► ||w||₁ = 1^T w₊ + 1^T w₋ is *leverage* (many other definitions used ...)

Asset returns

- investments held for one period
- initial prices $p_i > 0$; end of period prices $p_i^+ > 0$
- asset (fractional) returns $r_i = (p_i^+ p_i)/p_i$
- portfolio (fractional) return $R = r^T w$
- common model: r is a random variable, with mean $\mathbf{E} r = \mu$, covariance $\mathbf{E}(r \mu)(r \mu)^T = \Sigma$
- so R is a RV with $\mathbf{E} R = \mu^T w$, $\mathbf{var}(R) = w^T \Sigma w$
- **E** *R* is (mean) *return* of portfolio
- ▶ var(R) is risk of portfolio (risk also sometimes given as std(R) = √var(R))
- two objectives: high return, low risk

Classical (Markowitz) portfolio optimization

$$\begin{array}{ll} \text{maximize} & \boldsymbol{\mu}^{T}\boldsymbol{w} - \boldsymbol{\gamma}\boldsymbol{w}^{T}\boldsymbol{\Sigma}\boldsymbol{w} \\ \text{subject to} & \mathbf{1}^{T}\boldsymbol{w} = 1, \quad \boldsymbol{w} \in \mathcal{W} \end{array}$$

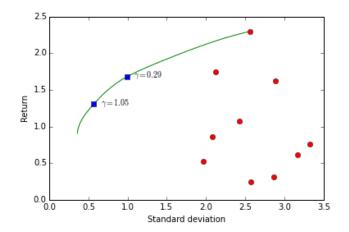
• variable $w \in \mathbf{R}^n$

• common case: $W = \mathbf{R}^n_+$ (long only portfolio)

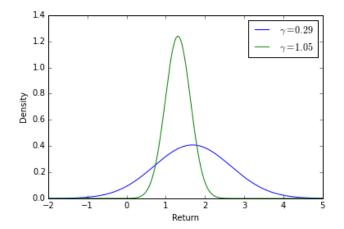
•
$$\mu^T w - \gamma w^T \Sigma w$$
 is risk-adjusted return

- varying γ gives optimal *risk-return trade-off*
- can also fix return and minimize risk, etc.

optimal risk-return trade-off for 10 assets, long only portfolio



return distributions for two risk aversion values



Portfolio Optimization

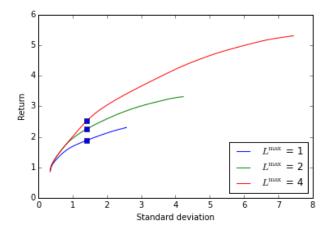
Portfolio constraints

- $W = \mathbf{R}^n$ (simple analytical solution)
- ▶ leverage limit: $||w||_1 \le L^{\max}$
- market neutral: $m^T \Sigma w = 0$
 - *m_i* is capitalization of asset *i*
 - $M = m^T r$ is market return

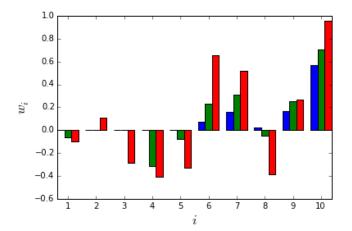
•
$$m^T \Sigma w = \mathbf{cov}(M, R)$$

i.e., market neutral portfolio return is uncorrelated with market return

optimal risk-return trade-off curves for leverage limits 1,2,4



three portfolios with $w^T \Sigma w = 2$, leverage limits L = 1, 2, 4



Variations

require μ^T w ≥ R^{min}, minimize w^TΣw or ||Σ^{1/2}w||₂
 include (broker) cost of short positions,

$$s^T(w)_-, s \ge 0$$

• include transaction cost (from previous portfolio w^{prev}),

$$\kappa^{\mathsf{T}} | \mathsf{w} - \mathsf{w}^{\mathrm{prev}} |^{\eta}, \quad \kappa \ge 0$$

common models: $\eta = 1, 3/2, 2$

Factor covariance model

$$\Sigma = F\tilde{\Sigma}F^T + D$$

- ► $F \in \mathbf{R}^{n \times k}$, $k \ll n$ is factor loading matrix
- ▶ *k* is number of factors (or sectors), typically 10s
- F_{ij} is loading of asset i to factor j
- D is diagonal matrix; D_{ii} > 0 is idiosyncratic risk
- $\tilde{\Sigma} > 0$ is the factor covariance matrix
- $F^T w \in \mathbf{R}^k$ gives portfolio factor exposures
- portfolio is factor j neutral if $(F^T w)_j = 0$

Portfolio optimization with factor covariance model

$$\begin{array}{ll} \text{maximize} & \mu^{T} w - \gamma \left(f^{T} \tilde{\Sigma} f + w^{T} D w \right) \\ \text{subject to} & \mathbf{1}^{T} w = 1, \quad f = F^{T} w \\ & w \in \mathcal{W}, \quad f \in \mathcal{F} \end{array}$$

▶ variables $w \in \mathbf{R}^n$ (allocations), $f \in \mathbf{R}^k$ (factor exposures)

• computational advantage:
$$O(nk^2)$$
 vs. $O(n^3)$

- ▶ 50 factors, 3000 assets
- leverage limit = 2
- solve with covariance given as

_

- single matrix
- factor model
- CVXPY/OSQP single thread time

covariance	solve time		
single matrix	173.30 sec		
factor model	0.85 sec		

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Worst-Case Risk Analysis

Covariance uncertainty

- single period Markowitz portfolio allocation problem
- we have fixed portfolio allocation $w \in \mathbf{R}^n$
- return covariance Σ not known, but we believe $\Sigma \in \mathcal{S}$
- S is convex set of possible covariance matrices
- risk is $w^T \Sigma w$, a linear function of Σ

Worst-case risk analysis

- what is the worst (maximum) risk, over all possible covariance matrices?
- worst-case risk analysis problem:

 $\begin{array}{ll} \text{maximize} & w^T \Sigma w\\ \text{subject to} & \Sigma \in \mathcal{S}, \quad \Sigma \succeq 0 \end{array}$

with variable $\boldsymbol{\Sigma}$

... a convex problem with variable Σ

if the worst-case risk is not too bad, you can worry less
if not, you'll confront your worst nightmare

Worst-Case Risk Analysis

$$\Sigma^{\rm nom} = \begin{bmatrix} 0.58 & 0.2 & 0.57 & -0.02 & 0.43 \\ 0.2 & 0.36 & 0.24 & 0 & 0.38 \\ 0.57 & 0.24 & 0.57 & -0.01 & 0.47 \\ -0.02 & 0 & -0.01 & 0.05 & 0.08 \\ 0.43 & 0.38 & 0.47 & 0.08 & 0.92 \end{bmatrix}$$

• nominal risk = 0.168

• worst case risk = 0.422

$$\text{worst case } \Delta = \begin{bmatrix} 0 & 0.04 & -0.2 & -0. & 0.2 \\ 0.04 & 0 & 0.2 & 0.09 & -0.2 \\ -0.2 & 0.2 & 0 & 0.12 & -0.2 \\ -0. & 0.09 & 0.12 & 0 & -0.18 \\ 0.2 & -0.2 & -0.2 & -0.18 & 0 \end{bmatrix}$$

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Ad display

- *m* advertisers/ads, $i = 1, \ldots, m$
- *n* time slots, $t = 1, \ldots, n$
- T_t is total traffic in time slot t
- $D_{it} \ge 0$ is number of ad *i* displayed in period *t*
- $\blacktriangleright \sum_{i} D_{it} \leq T_t$
- contracted minimum total displays: $\sum_t D_{it} \ge c_i$
- ▶ goal: choose *D_{it}*

Clicks and revenue

 $S_i = \min\left\{ K_i \sum_t C_{it}, B_i \right\}$

 \ldots a concave function of D

Ad optimization

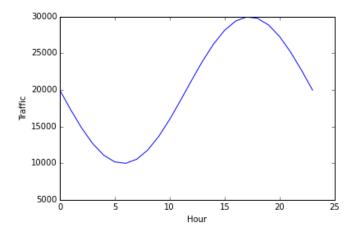
choose displays to maximize revenue:

 $\begin{array}{ll} \text{maximize} & \sum_i S_i \\ \text{subject to} & D \geq 0, \quad D^{\mathsf{T}} \mathbf{1} \leq \mathcal{T}, \quad D \mathbf{1} \geq c \end{array}$

• variable is
$$D \in \mathbf{R}^{m \times n}$$

▶ data are *T*, *c*, *R*, *B*, *P*

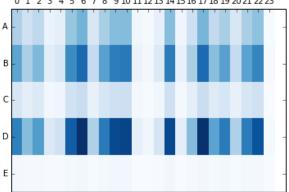
- 24 hourly periods, 5 ads (A–E)
- total traffic:



Optimal Advertising

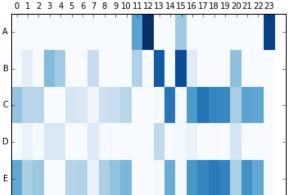
Ad	А	В	С	D	E
Ci	61000	80000	61000	23000	64000
Ri	0.15	1.18	0.57	2.08	2.43
Bi	25000	12000	12000	11000	17000

P_{it}



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

optimal D_{it}



7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ad revenue

Ad	А	В	С	D	E
Ci	61000	80000	61000	23000	64000
R _i	0.15	1.18	0.57	2.08	2.43
B_i	25000	12000	12000	11000	17000
$\sum_t D_{it}$	61000	80000	148116	23000	167323
S_i	182	12000	61000 0.57 12000 148116 12000	11000	7760

Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Standard regression

- ▶ given data $(x_i, y_i) \in \mathbf{R}^n \times \mathbf{R}, i = 1, ..., m$
- ▶ fit linear (affine) model $\hat{y}_i = \beta^T x_i v$, $\beta \in \mathbf{R}^n$, $v \in \mathbf{R}$
- residuals are $r_i = \hat{y}_i y_i$
- least-squares: choose β , v to minimize $||r||_2^2 = \sum_i r_i^2$
- mean of optimal residuals is zero
- can add (Tychonov) regularization: with $\lambda > 0$,

minimize $||r||_2^2 + \lambda ||\beta||_2^2$

Robust (Huber) regression

replace square with Huber function

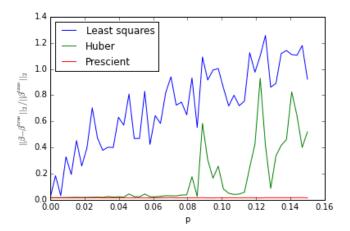
$$\phi(u) = \begin{cases} u^2 & |u| \le M\\ 2Mu - M^2 & |u| > M \end{cases}$$

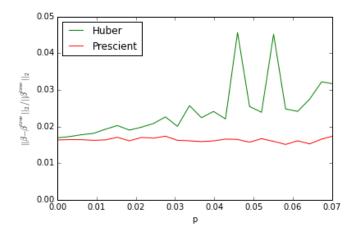
M > 0 is the Huber threshold

 same as least-squares for small residuals, but allows (some) large residuals

- m = 450 measurements, n = 300 regressors
- choose β^{true} ; $x_i \sim \mathcal{N}(0, I)$
- set $y_i = (\beta^{\text{true}})^T x_i + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0, 1)$
- with probability p, replace y_i with $-y_i$
- data has fraction p of (non-obvious) wrong measurements
- distribution of 'good' and 'bad' y_i are the same
- try to recover $\beta^{\text{true}} \in \mathbf{R}^n$ from measurements $y \in \mathbf{R}^m$
- 'prescient' version: we know which measurements are wrong

50 problem instances, p varying from 0 to 0.15





Quantile regression

• tilted
$$\ell_1$$
 penalty: for $\tau \in (0, 1)$,
 $\phi(u) = \tau(u)_+ + (1 - \tau)(u)_- = (1/2)|u| + (\tau - 1/2)u$

• quantile regression: choose β , v to minimize $\sum_i \phi(r_i)$

• $\tau = 0.5$: equal penalty for over- and under-estimating

- $\tau = 0.1$: 9× more penalty for under-estimating
- $\tau = 0.9$: 9× more penalty for over-estimating

Quantile regression

► for
$$r_i \neq 0$$
,
$$\frac{\partial \sum_i \phi(r_i)}{\partial v} = \tau |\{i : r_i > 0\}| - (1 - \tau) |\{i : r_i < 0\}|$$

(roughly speaking) for optimal v we have

$$\tau |\{i: r_i > 0\}| = (1 - \tau) |\{i: r_i < 0\}|$$

- ▶ and so for optimal v, $\tau m = |\{i : r_i < 0\}|$
- τ -quantile of optimal residuals is zero
- hence the name quantile regression

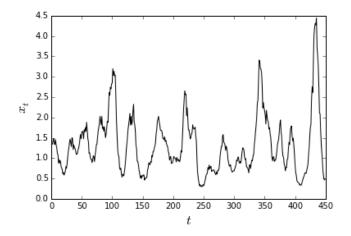
- time series x_t , $t = 0, 1, 2, \ldots$
- auto-regressive predictor:

$$\hat{x}_{t+1} = \beta^T(x_t, \ldots, x_{t-M}) - v$$

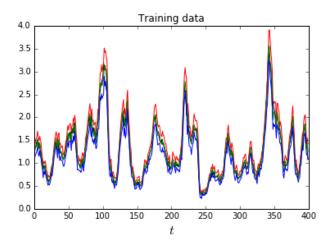
- M = 10 is memory of predictor
- use quantile regression for $\tau = 0.1, 0.5, 0.9$
- at each time t, gives three one-step-ahead predictions:

$$\hat{x}_{t+1}^{0.1}, \qquad \hat{x}_{t+1}^{0.5}, \qquad \hat{x}_{t+1}^{0.9}$$

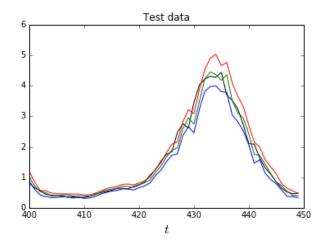
time series x_t



 x_t and predictions $\hat{x}_{t+1}^{0.1}$, $\hat{x}_{t+1}^{0.5}$, $\hat{x}_{t+1}^{0.9}$ (training set, $t = 0, \dots, 399$)

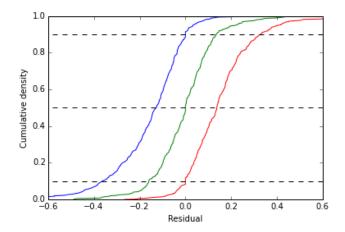


 x_t and predictions $\hat{x}_{t+1}^{0.1}$, $\hat{x}_{t+1}^{0.5}$, $\hat{x}_{t+1}^{0.9}$ (test set, $t = 400, \dots, 449$)

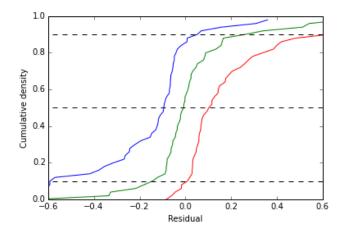


Regression Variations

residual distributions for $\tau = 0.9$, 0.5, and 0.1 (training set)



residual distributions for $\tau = 0.9$, 0.5, and 0.1 (test set)



Outline

Portfolio Optimization

Worst-Case Risk Analysis

Optimal Advertising

Regression Variations

Model Fitting

Data model

• given data $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, m$

• for
$$\mathcal{X} = \mathbf{R}^n$$
, x is feature vector

- for $\mathcal{Y} = \mathbf{R}$, y is (real) *outcome* or *label*
- for $\mathcal{Y} = \{-1, 1\}$, y is (boolean) outcome
- Find model or predictor ψ : X → Y so that ψ(x) ≈ y for data (x, y) that you haven't seen
- for $\mathcal{Y} = \mathbf{R}$, ψ is a regression model
- for $\mathcal{Y} = \{-1, 1\}$, ψ is a *classifier*
- we choose ψ based on observed data, prior knowledge

Loss minimization model

- ▶ data model parametrized by $\theta \in \mathbf{R}^n$
- ▶ loss function $L : \mathcal{X} \times \mathcal{Y} \times \mathbf{R}^n \to \mathbf{R}$
- L(x_i, y_i, θ) is loss (miss-fit) for data point (x_i, y_i), using model parameter θ
- choose θ ; then model is

$$\psi(x) = \operatorname*{argmin}_{y} L(x, y, \theta)$$

Model fitting via regularized loss minimization

- regularization $r : \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$
- r(θ) measures model complexity, enforces constraints, or represents prior
- choose θ by minimizing *regularized loss*

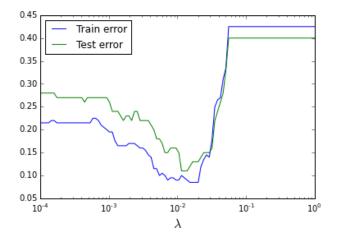
$$(1/m)\sum_{i}L(x_i,y_i,\theta)+r(\theta)$$

- ► for many useful cases, this is a convex problem
- model is $\psi(x) = \operatorname{argmin}_y L(x, y, \theta)$

model	$L(x, y, \theta)$	$\psi(x)$	r(heta)
least-squares	$(\theta^T x - y)^2$	$\theta^T x$	0
ridge regression	$(\theta^T x - y)^2$	$\theta^T x$	$\lambda \ \theta\ _2^2$
lasso	$(\theta^T x - y)^2$	$\theta^T x$	$\lambda \ \theta\ _1$
logistic classifier	$\log(1 + \exp(-y\theta^T x))$	$\operatorname{sign}(\theta^T x)$	0
SVM	$(1-y\theta^T x)_+$	$\operatorname{sign}(\theta^T x)$	$\lambda \ \theta\ _2^2$

- ▶ $\lambda > 0$ scales regularization
- all lead to convex fitting problems

- ▶ original (boolean) features $z \in \{0,1\}^{10}$
- (boolean) outcome $y \in \{-1, 1\}$
- ▶ new feature vector x ∈ {0,1}⁵⁵ contains all products z_iz_j (co-occurence of pairs of original features)
- use logistic loss, ℓ_1 regularizer
- training data has m = 200 examples; test on 100 examples



selected features $z_i z_j$, $\lambda = 0.01$

