The (weighted) geometric mean of vector $$x$$ with optional powers given by $$p$$.

geo_mean(x, p = NA_real_, max_denom = 1024)

## Arguments

x

An Expression or vector.

p

(Optional) A vector of weights for the weighted geometric mean. Defaults to a vector of ones, giving the unweighted geometric mean $$x_1^{1/n} \cdots x_n^{1/n}$$.

max_denom

(Optional) The maximum denominator to use in approximating p/sum(p) with w. If w is not an exact representation, increasing max_denom may offer a more accurate representation, at the cost of requiring more convex inequalities to represent the geometric mean. Defaults to 1024.

## Value

An Expression representing the geometric mean of the input.

## Details

$$\left(x_1^{p_1} \cdots x_n^{p_n} \right)^{\frac{1}{\mathbf{1}^Tp}}$$

The geometric mean includes an implicit constraint that $$x_i \geq 0$$ whenever $$p_i > 0$$. If $$p_i = 0, x_i$$ will be unconstrained. The only exception to this rule occurs when $$p$$ has exactly one nonzero element, say $$p_i$$, in which case geo_mean(x,p) is equivalent to $$x_i$$ (without the nonnegativity constraint). A specific case of this is when $$x \in \mathbf{R}^1$$.

## Examples

x <- Variable(2)
cost <- geo_mean(x)
prob <- Problem(Maximize(cost), list(sum(x) <= 1))
result <- solve(prob)
result$value #>  0.5 result$getValue(x)
#>      [,1]
#> [1,]  0.5
#> [2,]  0.5

if (FALSE) {
x <- Variable(5)
p <- c(0.07, 0.12, 0.23, 0.19, 0.39)
prob <- Problem(Maximize(geo_mean(x,p)), list(p_norm(x) <= 1))
result <- solve(prob)
result$value result$getValue(x)
}