Coverage for src / cvx / markowitz / risk / sample / sample.py: 100%
23 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
1# Copyright 2023 Stanford University Convex Optimization Group
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14"""Risk models based on the sample covariance matrix."""
16from __future__ import annotations
18from dataclasses import dataclass
20import cvxpy as cp
21import numpy as np
23from cvx.markowitz.cvxerror import CvxError
24from cvx.markowitz.model import Model
25from cvx.markowitz.names import DataNames as D
26from cvx.markowitz.types import Expressions, Matrix, Parameter, Variables # noqa: F401
27from cvx.markowitz.utils.fill import fill_matrix, fill_vector
30@dataclass(frozen=True)
31class SampleCovariance(Model):
32 """Risk model based on the Cholesky decomposition of the sample cov matrix."""
34 def __post_init__(self) -> None:
35 """Initialize parameters for the sample-covariance risk model."""
36 self.data[D.CHOLESKY] = cp.Parameter(
37 shape=(self.assets, self.assets),
38 name=D.CHOLESKY,
39 value=np.zeros((self.assets, self.assets)),
40 )
42 self.data[D.VOLA_UNCERTAINTY] = cp.Parameter(
43 shape=self.assets,
44 name=D.VOLA_UNCERTAINTY,
45 value=np.zeros(self.assets),
46 nonneg=True,
47 )
49 # x: array([ 5.19054e-01, 4.80946e-01, -1.59557e-12, -1.59557e-12])
50 def estimate(self, variables: Variables) -> cp.Expression:
51 """Estimate risk via Cholesky-based norm of exposures and uncertainties."""
52 return cp.norm2(
53 cp.hstack(
54 [
55 self.data[D.CHOLESKY] @ variables[D.WEIGHTS],
56 self.data[D.VOLA_UNCERTAINTY] @ variables[D._ABS],
57 ]
58 )
59 )
61 def update(self, **kwargs: Matrix) -> None:
62 """Assign Cholesky factor and volatility-uncertainty vector.
64 Expected keyword arguments:
65 D.CHOLESKY: Cholesky factor of the covariance matrix (assets x assets).
66 D.VOLA_UNCERTAINTY: Nonnegative vector of per-asset uncertainty.
67 """
68 if not kwargs[D.CHOLESKY].shape[0] == kwargs[D.VOLA_UNCERTAINTY].shape[0]:
69 raise CvxError("Mismatch in length for chol and vola_uncertainty")
71 self.data[D.CHOLESKY].value = fill_matrix(rows=self.assets, cols=self.assets, x=kwargs[D.CHOLESKY])
72 self.data[D.VOLA_UNCERTAINTY].value = fill_vector(num=self.assets, x=kwargs[D.VOLA_UNCERTAINTY])
74 def constraints(self, variables: Variables) -> Expressions:
75 """Return auxiliary constraints used for robust risk modeling."""
76 return {
77 "dummy": variables[D._ABS] >= cp.abs(variables[D.WEIGHTS]), # Robust risk dummy variable
78 }