Coverage for src / cvx / markowitz / portfolios / min_var.py: 100%
16 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
1# Copyright 2023 Stanford University Convex Optimization Group
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14"""Minimum-variance portfolio builder."""
16from __future__ import annotations
18from dataclasses import dataclass
20import cvxpy as cp
22from cvx.markowitz.builder import Builder
23from cvx.markowitz.model import Model # noqa: F401
24from cvx.markowitz.names import ConstraintName as C
25from cvx.markowitz.types import Parameter, Variables # noqa: F401
28@dataclass(frozen=True)
29class MinVar(Builder):
30 """Construct a long-only, budget-constrained minimum-variance portfolio."""
32 @property
33 def objective(self) -> cp.Objective:
34 """Return the CVXPY objective for minimizing portfolio risk."""
35 return cp.Minimize(self.risk.estimate(self.variables))
37 def __post_init__(self) -> None:
38 """Set up default constraints for the minimum-variance portfolio."""
39 super().__post_init__()
40 self.constraints[C.LONG_ONLY] = self.weights >= 0
41 self.constraints[C.BUDGET] = cp.sum(self.weights) == 1.0