Coverage for src / cvx / markowitz / risk / cvar / cvar.py: 100%
19 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
1# Copyright 2023 Stanford University Convex Optimization Group
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14"""Conditional Value-at-Risk (CVaR) risk model implementation."""
16from __future__ import annotations
18from dataclasses import dataclass
20import cvxpy as cp
21import numpy as np
23from cvx.markowitz.model import Model
24from cvx.markowitz.names import DataNames as D
25from cvx.markowitz.types import Matrix, Parameter, Variables # noqa: F401
26from cvx.markowitz.utils.fill import fill_matrix
29@dataclass(frozen=True)
30class CVar(Model):
31 """Conditional value at risk model."""
33 alpha: float = 0.95
34 rows: int = 0
36 def __post_init__(self) -> None:
37 """Initialize CVaR model parameters.
39 Creates the returns matrix parameter with shape `(rows, assets)` and
40 zeros as default value. The `alpha` quantile controls tail size during
41 estimation in `estimate`.
42 """
43 # self.k = int(self.n * (1 - self.alpha))
44 self.data[D.RETURNS] = cp.Parameter(
45 shape=(self.rows, self.assets),
46 name=D.RETURNS,
47 value=np.zeros((self.rows, self.assets)),
48 )
50 def estimate(self, variables: Variables) -> cp.Expression:
51 """Estimate the risk by computing the Cholesky decomposition of self.cov."""
52 # R is a matrix of returns, n is the number of rows in R
53 # n = self.R.shape[0]
54 # k is the number of returns in the left tail
55 # k = int(n * (1 - self.alpha))
56 # average value of the k elements in the left tail
57 k = int(self.rows * (1 - self.alpha))
58 return -cp.sum_smallest(self.data[D.RETURNS] @ variables[D.WEIGHTS], k=k) / k
60 def update(self, **kwargs: Matrix) -> None:
61 """Update the returns matrix used by the CVaR model.
63 Expected keyword arguments:
64 D.RETURNS: Matrix of historical/scenario returns with shape (rows, assets).
65 """
66 self.data[D.RETURNS].value = fill_matrix(rows=self.rows, cols=self.assets, x=kwargs[D.RETURNS])