Coverage for src / cvx / markowitz / models / expected_returns.py: 100%
23 statements
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
« prev ^ index » next coverage.py v7.12.0, created at 2025-12-08 13:49 +0000
1# Copyright 2023 Stanford University Convex Optimization Group
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14"""Model for expected returns."""
16from __future__ import annotations
18from dataclasses import dataclass
20import cvxpy as cp
21import numpy as np
23from cvx.markowitz.cvxerror import CvxError
24from cvx.markowitz.model import Model
25from cvx.markowitz.names import DataNames as D
26from cvx.markowitz.types import Expressions, Matrix, Parameter, Variables # noqa: F401
27from cvx.markowitz.utils.fill import fill_vector
30@dataclass(frozen=True)
31class ExpectedReturns(Model):
32 """Model for expected returns."""
34 def __post_init__(self) -> None:
35 """Initialize expected-return parameters and uncertainty bounds."""
36 self.data[D.MU] = cp.Parameter(
37 shape=self.assets,
38 name=D.MU,
39 value=np.zeros(self.assets),
40 )
42 # Robust return estimate
43 self.parameter["mu_uncertainty"] = cp.Parameter(
44 shape=self.assets,
45 name="mu_uncertainty",
46 value=np.zeros(self.assets),
47 nonneg=True,
48 )
50 def estimate(self, variables: Variables) -> cp.Expression:
51 """Return robust expected return w^T mu - mu_uncertainty^T |w|.
53 Args:
54 variables: Optimization variables containing D.WEIGHTS.
56 Returns:
57 A CVXPY expression for the robust expected return.
58 """
59 return self.data[D.MU] @ variables[D.WEIGHTS] - self.parameter["mu_uncertainty"] @ cp.abs(variables[D.WEIGHTS])
61 def update(self, **kwargs: Matrix) -> None:
62 """Update expected returns and their uncertainty bounds.
64 Expected keyword arguments:
65 D.MU: Vector of expected returns.
66 mu_uncertainty: Nonnegative vector with element-wise uncertainty.
67 """
68 exp_returns = kwargs[D.MU]
69 self.data[D.MU].value = fill_vector(num=self.assets, x=exp_returns)
71 # Robust return estimate
72 uncertainty = kwargs["mu_uncertainty"]
73 if not uncertainty.shape[0] == exp_returns.shape[0]:
74 raise CvxError("Mismatch in length for mu and mu_uncertainty")
76 self.parameter["mu_uncertainty"].value = fill_vector(num=self.assets, x=uncertainty)